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Preface
'Back in the days' so called 'illegal' opcodes were researched independently by different parties, and
detail knowledge about them was considered 'black magic' for many conventional programmers.
They first appeared in the context of copy protection schemes, so keeping the knowledge secret was
crucial.

When  some time  later  some of  these  opcodes  were  documented  by  various  book authors  and
magazines, a lot of misinformation was spread and a number of weird myths were born. It took
another  few years  until  some  brave  souls  started  to  systematically  investigate  each  and  every
opcode,  and  until  the  mid  90s  that  Wolfgang  Lorenz  came  up  with  his  test  suite  that  finally
contained elaborated test programs for them.

Still, a few opcodes were considered witchcraft for a while (the so called 'unstable' ones), until other
people finally de-capped an actual CPU and solved the remaining riddles.

This document tries to present the current state of the art in a readable form, and is in large parts the
result of pasting existing documents together and editing them (see References)

24/12/20 groepaz/solution

Scope of this Document

To make things simple,  the rest  of this  document refers  specifically  to  the MOS6510 (and the
CSG8500) in the Commodore 64, and to the CSG8502 found in the Commodore 128.

However,  most  of  the document applies  to  MOS6502 as  well.  Also MOS Technology licensed
Rockwell  and  Synertek  to  second  source  the  6502  microprocessor  and  support  components,
meaning they used the same masks for manufacturing, so their chips should behave (exactly) the
same. The 6502C “Sandy” found in Atari 8-bit computers also seems to work the same.

Some of the 'unstable' opcodes are known to work slightly different on 6502 equipped machines,
but that is just the result of the RDY line not being used in them.

This document does not apply to the 65C02, 652SC02, 65CE02, 65816 etc. (These are all not 100%
6502 compatible)

Whether related CPUs like the 7501/8501 used in the CBM264 series behaves the same has not
been tested (but is likely – feedback welcomed).

Intended Audience

This document is not for beginners (such as yourself) *. The reader should be familiar with 6502
assembly,  and in particular  is  expected to  know how the regular opcodes and CPU flags work
exactly. For those that do not feel confident enough, having a reference to the regular opcodes, flags
behaviour and things like decimal mode at hand is probably highly recommended. 

*) Wording change suggested by Poopmaster

License

This documentation is free as in free beer. All rights reversed.

If using the information contained here results in ultra realistic smoke effects and/or loss of mental
health, it is entirely your fault. You have been warned.
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What you get

• Reference chart of all 'illegal' opcodes

• Cycle by cycle breakdown of the 'illegal' addressing modes

• For every 'illegal' opcode:

◦ Formal description of each opcode, including flags etc.

◦ General description of operation and eventual quirks

◦ equivalent 'legal' code

◦ All documented behaviour backed up by test code. The referenced test code can be 
found in the VICE test-programs repository at 

https://sourceforge.net/p/vice-emu/code/HEAD/tree/testprogs/ 

◦ examples for real world usage, if available

• Some hints on using decimal mode in (not only) unintended ways

• Description of the so called “dummy” memory accesses and some examples on how to 
(ab)use them

• A short description of all other unintended bugs and quirks of the CPU

- II -
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Naming Conventions

A Accumulator

X X-register

Y Y-register

SP Stack-pointer

PC Program Counter

NV-BDIZC Flags in the status-register

{imm} An immediate value

{addr} Effective address given in the opcode (including indexing)

{H+1} High byte of the address given in the opcode, plus 1

{CONST} 'Magic' chip and/or temperature dependent constant value

& Binary AND

| Binary OR

^ Binary XOR

+ Integer Addition

- Integer Subtraction

* Integer Multiplication (powers of two work like a bitshift)

/ Integer Division (powers of two work like a bitshift)

In the various tables colours GREEN, YELLOW and RED are used in the following way:

GREEN indicates all completely stable opcodes, which can be used without special precautions,
YELLOW marks partially unstable opcodes which need some special care and RED is reserved for
the remaining few which are highly unstable and can only be used with severe restrictions.

Address-Mode Abbreviations

AA Absolute Address

AAH Absolute Address High

AAL Absolute Address Low

DO Direct Offset

Mnemonics

This  document  lists  all  previously  used  mnemonics  for  each  opcode  in  the  headlines  of  their
description, and then one variant which the author was most familiar with is used throughout the
rest of the text. A table that shows which mnemonics are supported by some popular assemblers can
be found in the appendix.
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Processor Flags

Standard notation is used for the processor flags:

N Negative

V oVerflow

- bit5 of the status register is unused

B Break

D Decimal

I Interrupt

Z Zero

C Carry

To  indicate  what  processor  flags  are  used  and/or  modified  by  the  respective  instructions  this
document uses a slightly different notation than many other existing ones. In particular this will
allow to indicate directly in the tables whether an instruction depends on, modifies, or just sets a
flag.

i The instruction depends on this flag (takes it as INPUT) but does not change it. In this 
document this applies to the decimal flag only.

o The instruction does not depend on this flag, but does set or clear it (it is OUTPUT only). 
The zero flag is a typical example for this (only branches depend on it, other instruction 
would only set it)

x The instruction depends on this flag, and does change it too. The carry flag is a typical 
example for this (although not generally in all instructions).

The instruction does not depend on, nor change, this flag

- IV -



Opcode Matrix
The instructions of the 6502 are compressed into a 130-entry decode ROM. Instead of 256 entries
telling how to process each separate opcode, it's encoded as combinatorial logic post-processing the
output of a "sparse" ROM that acts in some ways like a programmable logic array (PLA).

Many instructions activate multiple lines of the decode ROM at once. Often this is on purpose, such
as one line for the addressing mode and one for the opcode part.  But  many of the unintended
opcodes  simultaneously  trigger  parts  of  the  ROM that  were  intended for  completely  unrelated
instructions.

If we arrange the opcode matrix in a slightly different way than it is usually done, we can show
some interesting symmetries:

A:  Control Instructions + Load/Store Y B:  ALU Operations + Load/Store A

  +00 +04 +08 +0C +10 +14 +18 +1C +01 +05 +09 +0D +11 +15 +19 +1D

00 BRK NOP
zp

PHP NOP
abs

BPL
rel

NOP
zp,x

CLC NOP
abs,x

ORA
(zp,x)

ORA
zp

ORA
#imm

ORA
abs

ORA
(zp),y

ORA
zp,x

ORA
abs,y

ORA
abs,x

20 JSR
abs

BIT
zp

PLP BIT
abs

BMI
rel

NOP
zp,x

SEC NOP
abs,x

AND
(zp,x)

AND
zp

AND
#imm

AND
abs

AND
(zp),y

AND
zp,x

AND
abs,y

AND
abs,x

40 RTI NOP
zp

PHA JMP
abs

BVC
rel

NOP
zp,x

CLI NOP
abs,x

EOR
(zp,x)

EOR
zp

EOR
#imm

EOR
abs

EOR
(zp),y

EOR
zp,x

EOR
abs,y

EOR
abs,x

60 RTS NOP
zp

PLA JMP
(ind)

BVS
rel

NOP
zp,x

SEI NOP
abs,x

ADC
(zp,x)

ADC
zp

ADC
#imm

ADC
abs

ADC
(zp),y

ADC
zp,x

ADC
abs,y

ADC
abs,x

80 NOP
#imm

STY
zp

DEY STY
abs

BCC
rel

STY
zp,x

TYA SHY
abs,x

STA
(zp,x)

STA
zp

NOP
#imm

STA
abs

STA
(zp),y

STA
zp,x

STA
abs,y

STA
abs,x

A0 LDY
#imm

LDY
zp

TAY LDY
abs

BCS
rel

LDY
zp,x

CLV LDY
abs,x

LDA
(zp,x)

LDA
zp

LDA
#imm

LDA
abs

LDA
(zp),y

LDA
zp,x

LDA
abs,y

LDA
abs,x

C0 CPY
#imm

CPY
zp

INY CPY
abs

BNE
rel

NOP
zp,x

CLD NOP
abs,x

CMP
(zp,x)

CMP
zp

CMP
#imm

CMP
abs

CMP
(zp),y

CMP
zp,x

CMP
abs,y

CMP
abs,x

E0 CPX
#imm

CPX
zp

INX CPX
abs

BEQ
rel

NOP
zp,x

SED NOP
abs,x

SBC
(zp,x)

SBC
zp

SBC
#imm

SBC
abs

SBC
(zp),y

SBC
zp,x

SBC
abs,y

SBC
abs,x

+02 +06 +0A +0E +12 +16 +1A +1E +03 +07 +0B +0F +13 +17 +1B +1F

00 JAM ASL
zp

ASL ASL
abs

JAM ASL
zp,x

NOP ASL
abs,x

SLO
(zp,x)

SLO
zp

ANC
#imm

SLO
abs

SLO
(zp),y

SLO
zp,x

SLO
abs,y

SLO
abs,x

20 JAM ROL
zp

ROL ROL
abs

JAM ROL
zp,x

NOP ROL
abs,x

RLA
(zp,x)

RLA
zp

ANC
#imm

RLA
abs

RLA
(zp),y

RLA
zp,x

RLA
abs,y

RLA
abs,x

40 JAM LSR
zp

LSR LSR
abs

JAM LSR
zp,x

NOP LSR
abs,x

SRE
(zp,x)

SRE
zp

ALR
#imm

SRE
abs

SRE
(zp),y

SRE
zp,x

SRE
abs,y

SRE
abs,x

60 JAM ROR
zp

ROR ROR
abs

JAM ROR
zp,x

NOP ROR
abs,x

RRA
(zp,x)

RRA
zp

ARR
#imm

RRA
abs

SRE
(zp),y

RRA
zp,x

RRA
abs,y

RRA
abs,x

80 NOP
#imm

STX
zp

TXA STX
abs

JAM STX
zp,y

TXS SHX
abs,y

SAX
(zp,x)

SAX
zp

ANE
#imm

SAX
abs

SHA
(zp),y

SAX
zp,y

TAS
abs,y

SHA
abs,y

A0 LDX
#imm

LDX
zp

TAX LDX
abs

JAM LDX
zp,y

TSX LDX
abs,y

LAX
(zp,x)

LAX
zp

LAX
#imm

LAX
abs

LAX
(zp),y

LAX
zp,y

LAS
abs,y

LAX
abs,y

C0 NOP
#imm

DEC
zp

DEX DEC
abs

JAM DEC
zp,x

NOP DEC
abs,x

DCP
(zp,x)

DCP
zp

SBX
#imm

DCP
abs

DCP
(zp),y

DCP
zp,x

DCP
abs,y 

DCP
abs,x

E0 NOP
#imm

INC
zp

NOP INC
abs

JAM INC
zp,x

NOP INC
abs,x

ISC
(zp,x)

ISC
zp

SBC
#imm

ISC
abs

ISC
(zp),y

ISC
zp,x

ISC
abs,y

ISC
abs,x

C:  RMW Operations + Load/Store X D:  Unintended Operations
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• Variants of the same instruction in a block are mostly in the same row.

• Instructions  in  the  same  column  have  (mostly)  the  same  addressing  mode,  with  the
following exceptions:

◦ JSR abs (expected implied) (but 00,20,40,60 are all „stack“)
◦ JMP (ind) (expected abs)
◦ STX zp,y and LDX zp,y (can‘t be zp,x)
◦ SHX abs,y and LDX abs,y (can‘t be abs,x)
◦ SAX zp,y and LAX zp,y (can‘t be zp,x)
◦ SHA abs,y and LAX abs,y (can‘t be abs,x)

Other conclusions:

• all JAMs are empty „stack“ or „relative“ instructions

• In blocks A, B and C all unused instructions turn into NOPs (except for the JAMs) with the
expected addressing modes. The only exceptions from this are opcodes 9C and 9E, which
appear to be „non working“ STY abs,x and STX abs,y respectively.

• NOP #imm in block B is “STA #imm” (which makes no sense)

• All instructions in block D are unintended instructions. These “combine” (not necessarily all
of) the sub-operations of instructions from the ALU operation at the same position in the
same column and RMW operation at the same position in the same row, all of them having
the same addressing mode as the corresponding ALU operation in the same column, with the
four exceptions listed above.

• LAX #imm combines  LDA #imm with  TAX, which makes  some sense at least (but still
does not explain the weird unstable behaviour and/or the “magic constant”)

• ANE #imm combines “STA #imm” with TXA, which makes no sense at all on a first look,
but might contribute to the ANDing of the Akkumulator, X-Register and immediate value.
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Unintended Opcodes

Overview
Opc. imp imm zp zpx zpy izx izy abs abx aby Function N V - B D I Z C

SLO $07 $17 $03 $13 $0F $1F $1B
{addr} = {addr} * 2 

A = A or {addr}
o o o

RLA $27 $37 $23 $33 $2F $3F $3B
{addr} = rol {addr}

A = A and {addr}
o o x

SRE $47 $57 $43 $53 $4F $5F $5B
{addr} = {addr} / 2 

A = A eor {addr}
o o o

RRA $67 $77 $63 $73 $6F $7F $7B
{addr} = ror {addr}

A = A adc {addr}
o o i o x

SAX $87 $97 $83 $8F {addr} = A & X

LAX $A7 $B7 $A3 $B3 $AF $BF A,X = {addr} o o

DCP $C7 $D7 $C3 $D3 $CF $DF $DB
{addr} = {addr} - 1  

A cmp {addr}
o o o

ISC $E7 $F7 $E3 $F3 $EF $FF $FB
{addr} = {addr} + 1 

A = A - {addr}
o o i o x

ANC $0B A = A & #{imm} o o o

ANC $2B A = A & #{imm} o o o

ALR $4B A = (A & #{imm}) / 2 o o o

ARR $6B A = (A & #{imm}) / 2 o o i o x

SBX $CB X = A & X - #{imm} o o o

SBC $EB A = A - #{imm} o o i o x

SHA $93 $9F {addr} = A & X & {H+1}

SHY $9C {addr} = Y & {H+1}

SHX $9E {addr} = X & {H+1}

TAS $9B
SP = A & X 

{addr} = SP & {H+1}

LAS $BB A,X,SP = {addr} & SP o o

LAX $AB A,X = (A | CONST) & #{imm} o o

ANE $8B A = (A | CONST) & X & #{imm} o o
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Opc. imp imm zp zpx zpy izx izy abs abx aby Function N V - B D I Z C

NOP $1A $80 $04 $14 $0C $1C No effect

NOP $3A $82 $44 $34 $3C No effect

NOP $5A $C2 $64 $54 $5C No effect

NOP $7A $E2 $74 $7C No effect

NOP $DA $89 $D4 $DC No effect

NOP $FA $F4 $FC No effect

Opc. - - - - - - - - - - - - Function N V - B D I Z C

JAM $02 $12 $22 $32 $42 $52 $62 $72 $92 $B2 $D2 $F2 CPU lock-up
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Types

Combinations of two operations with the same addressing mode

Opcode Function

SLO {addr} ASL {addr} + ORA {addr}

RLA {addr} ROL {addr} + AND {addr}

SRE {addr} LSR {addr} + EOR {addr}

RRA {addr} ROR {addr} + ADC {addr}

SAX {addr} STA {addr} + STX {addr}    store A & X into {addr}

LAX {addr} LDA {addr} + LDX {addr}

DCP {addr} DEC {addr} + CMP {addr}

ISC {addr} INC {addr} + SBC {addr}

Combinations of an immediate and an implied command

Opcode Function

ANE #{imm} TXA + AND #{imm}

LAX #{imm} LDA #{imm} + TAX

ANC #{imm} AND #{imm} + (ASL)

ANC #{imm} AND #{imm} + (ROL)

ALR #{imm} AND #{imm} + LSR

ARR #{imm} AND #{imm} + ROR

SBX #{imm} CMP #{imm} + DEX       put A & X minus #{imm} into X

SBC #{imm} SBC #{imm} + NOP
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Combinations of STA/STX/STY

Opcode Function

SHA {addr} stores A & X & H into {addr}

SHX {addr} stores X & H into {addr}

SHY {addr} stores Y & H into {addr}

Combinations of STA/TXS and LDA/TSX

Opcode Function

TAS {addr} stores A & X into SP and A & X & H into {addr}

LAS {addr} stores {addr} & SP into A, X and SP

No effect

Bit configuration does not allow any operation on these ones:

Opcode Function

NOP no effect

NOP #{imm} Fetches #{imm} but has no effects.

NOP {addr} Fetches {addr} but has no effects.

Lock-up

Opcode Function

JAM Halt the CPU. The buses will be set to $FF.
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Stable Opcodes

SLO (ASO)

Type:  Combination  of  two operations  with  the  same addressing  mode  (Sub-instructions:  ASL,
ORA)

Opc. Mnemonic Function Size Cycles N V - B D I Z C

$07 SLO zp {addr} = {addr} * 2   A = A or {addr} 2 5 o o o

$17 SLO zp, x 2 6 o o o

$03 SLO (zp, x) 2 8 o o o

$13 SLO (zp), y 2 8 o o o

$0F SLO abs 3 6 o o o

$1F SLO abs, x 3 7 o o o

$1B SLO abs, y 3 7 o o o

Operation: Shift left one bit in memory, then OR accumulator with memory.

• The leftmost bit is shifted into the carry flag
• N and Z are set after the ORA

Test code: Lorenz-2.15/asoa.prg, Lorenz-2.15/asoax.prg, 
Lorenz-2.15/asoay.prg, Lorenz-2.15/asoix.prg, 
Lorenz-2.15/asoiy.prg, Lorenz-2.15/asoz.prg, Lorenz-2.15/asozx.prg
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Example:

SLO $C010 ;0F 10 C0

Equivalent Instructions:

ASL $C010
ORA $C010



Example: Multibyte arithmetic left shift and load leftmost byte
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Instead of:
ASL data+2 ; A is zero before reaching here
ROL data+1
ROL data+0
LDA data+2

you can write: (which is shorter)

SLO data+2 ; A is zero before reaching here
ROL data+1
ROL data+0



RLA (RLN)

Type:  Combination  of  two operations  with  the  same addressing  mode (Sub-instructions:  ROL,
AND)

Opc. Mnemonic Function Size Cycles N V - B D I Z C

$27 RLA zp {addr} = rol {addr}   A = A and {addr} 2 5 o o x

$37 RLA zp, x 2 6 o o x

$23 RLA (zp, x) 2 8 o o x

$33 RLA (zp), y 2 8 o o x

$2F RLA abs 3 6 o o x

$3F RLA abs, x 3 7 o o x

$3B RLA abs, y 3 7 o o x

Operation: Rotate one bit left in memory, then AND accumulator with memory.

• Carry is shifted in as LSB and bit 7 is shifted into Carry
• N and Z are set according to the AND

Test code: Lorenz-2.15/rlaa.prg, Lorenz-2.15/rlaax.prg, 
Lorenz-2.15/rlaay.prg, Lorenz-2.15/rlaix.prg, 
Lorenz-2.15/rlaiy.prg, Lorenz-2.15/rlaz.prg, Lorenz-2.15/rlazx.prg
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Example:

RLA $FC,X ;37 FC

Equivalent Instructions:

ROL $FC,X
AND $FC,X



Example: scroll over a background layer
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Lets say you want to create a scroller that moves text over some fixed background graphics. 
Suppose the data of the sliding text is stored at scrollgfx and the data of the fixed background
at backgroundgfx. The actual data that is displayed is located at buffer.

Combining the sliding and fixed data without RLA would go something like (for the rightmost 
byte of the top line of the gfx data) this:

ROL scrollgfx ; shift left (with carry)
LDA scrollgfx
AND backgroundgfx  ; combine with background
STA buffer

… which takes 18 cycles in 16 bytes

instead you can write:

LDA backgroundgfx
RLA scrollgfx ; shift left and combine with bg
STA buffer

… which takes 14 cycles in 12 bytes



SRE (LSE)

Type:  Combination  of  two  operations  with  the  same addressing  mode  (Sub-instructions:  LSR,
EOR)

Opc. Mnemonic Function Size Cycles N V - B D I Z C

$47 SRE zp {addr} = {addr} / 2   A = A eor {addr} 2 5 o o o

$57 SRE zp, x 2 6 o o o

$43 SRE (zp, x) 2 8 o o o

$53 SRE (zp), y 2 8 o o o

$4F SRE abs 3 6 o o o

$5F SRE abs, x 3 7 o o o

$5B SRE abs, y 3 7 o o o

Operation: Shift right one bit in memory, then EOR accumulator with memory.

• LSB is shifted into the carry flag
• N and Z are set after the EOR

Test code: Lorenz-2.15/lsea.prg, Lorenz-2.15/lseax.prg, 
Lorenz-2.15/lseay.prg, Lorenz-2.15/lseix.prg, 
Lorenz-2.15/lseiy.prg, Lorenz-2.15/lsez.prg, Lorenz-2.15/lsezx.prg
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Example:

SRE $C100,X ;5F 00 C1

Equivalent Instructions:

LSR $C100,X

EOR $C100,X



Example: 8bit 1-of-8 counter
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SRE shifts the content of a memory location to the right and EORs the content with A, while SLO
shifts to the left and does an OR instead of EOR.

So this is nice to combine the previous described 8 bit counter with for e.g. setting pixels:

LDA #$80

STA pix

...

LDA (zp),y

SRE pix ;shift mask one to the right 

;and eor mask with A

BCS advance_column ;did the counter under-run? 

;so advance column

STA (zp),y

...

advance_column:

ROR pix ;reset counter

ORA #$80 ;set first pixel

STA (zp),y

LDA zp ;advance column

;CLC ;is still clear

ADC #$08

STA zp

BCC +

INC zp+1

+



RRA (RRD)

Type:  Combination  of  two operations  with the  same addressing  mode (Sub-instructions:  ROR,
ADC)

Opc. Mnemonic Function Size Cycles N V - B D I Z C

$67 RRA zp {addr} = ror {addr}   A = A adc {addr} 2 5 o o i o x

$77 RRA zp, x 2 6 o o i o x

$63 RRA (zp, x) 2 8 o o i o x

$73 RRA (zp), y 2 8 o o i o x

$6F RRA abs 3 6 o o i o x

$7F RRA abs, x 3 7 o o i o x

$7B RRA abs, y 3 7 o o i o x

Operation: Rotate one bit right in memory, then add memory to accumulator (with carry).

• Bit 1 is shifted out into the carry flag and Carry flag is shifted into bit 7 by the ROR
• then all flags are set according to the ADC

This instruction inherits the decimal flag dependency from ADC. For the behaviour in decimal 
mode see Unintended decimal mode: RRA (RRD).

Test code: Lorenz-2.15/rraa.prg, Lorenz-2.15/rraax.prg, 
Lorenz-2.15/rraay.prg, Lorenz-2.15/rraix.prg, 
Lorenz-2.15/rraiy.prg, Lorenz-2.15/rraz.prg, 
Lorenz-2.15/rrazx.prg, 64doc/droradc.prg
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Example:

RRA $030C ;6F 0C 03

Equivalent Instructions:

ROR $030C
ADC $030C



Example: noise LFSR
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If you need a fast “noise” generator, something like this could work:

LDA #$e4 ; initial seed
STA zp1
LDA #$01 ; initial seed
CLC

...
; restore accu and carry
RRA zp1
EOR #$01
ROR
; “noise” value in accu
; preserve accu and carry
...



SAX (AXS, AAX)

Type: Combination of two operations with the same addressing mode (Sub-instructions: STA, STX)

Opc. Mnemonic Function Size Cycles N V - B D I Z C

$87 SAX zp {addr} = A & X 2 3

$97 SAX zp, y 2 4

$83 SAX (zp, x) 2 6

$8F SAX abs 3 4

Operation: AND the contents of the A and X registers (without changing the contents of either
register) and stores the result in memory.

Test code: Lorenz-2.15/axsa.prg, Lorenz-2.15/axsix.prg, 
Lorenz-2.15/axsz.prg, Lorenz-2.15/axszy.prg

Note that two addressing modes that SAX is missing, absolute Y indexed and indirect Y indexed,
can be simulated by using the SHA instruction, see SHA (AXA, AHX, TEA).

'The  SAX instruction  decodes  to  two instructions  (STA and STX)  whose  behaviour  is  identical
except that one hits the output-enable signal for the accumulator, and the other hits the output-
enable  signal  for  the  X  register.   Although  it  would  seem  that  this  would  cause  ambiguous
behaviour, it turns out that during one half of each cycle the internal operand-output bus is set to
all  '1's,  and the  read-enable signals  for  the accumulator  and X register  (and Y register,  stack
pointer, etc.) only allow those registers to set the internal operand-output bus bits to '0'. Thus, if a
bit is zero in either the accumulator or the X register, it will be stored as zero; if it's set to '1' in
both, then nothing will pull down the bus so it will output '1'.'
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Example:

SAX $FE ;87 FE

Equivalent Instructions:

PHP ; save flags and accumulator
PHA
STX $FE
AND $FE
STA $FE
PLA ; restore flags and accumulator
PLP

Note that SAX does not affect any flags in the processor status register, and does not modify A/X.
It would also not actually use the stack, which is only needed to mimic the behaviour with legal
opcodes in this example.



Example: store values with mask

Example: update Sprite Pointers

- 16 -

This opcode is ideal to set up a permanent mask and store values combined with that mask: 

LDX #$aa ;set up mask

LDA $1000,y ;load A

SAX $80,y ;store A & $aa

Often you need to set up all 8 sprite pointers in as few cycles as possible, this could be done like 
this:

LDA #$01             ;A=%00000001 

LDX #$fe             ;X=%11111110

SAX screen + $3f8    ;$00

STA screen + $3f9    ;$01

LDA #$03             ;A=%00000011

SAX screen + $3fa    ;$02

STA screen + $3fb    ;$03

LDA #$05             ;A=%00000101

SAX screen + $3fc    ;$04

STA screen + $3fd    ;$05

LDA #$07             ;A=%00000111

SAX screen + $3fe    ;$06

STA screen + $3ff    ;$07
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Alternatively you can swap the roles of A and X, and you get the following:

LDX #$04          ;X=%00000100

LDA #$fb          ;A=%11111011

SAX screen + $3f8 ;$00

STX screen + $3fc ;$04

INX               ;X=%00000101

SAX screen + $3f9 ;$01

STX screen + $3fd ;$05

INX               ;X=%00000110

SAX screen + $3fa ;$02

STX screen + $3fe ;$06

INX               ;X=%00000111

SAX screen + $3fb ;$03

STX screen + $3ff ;$07

This does not save any cycles, but 3 bytes.



LAX

Type:  Combination  of  two operations  with the  same addressing  mode (Sub-instructions:  LDA,
LDX)

Opc. Mnemonic Function Size Cycles N V - B D I Z C

$A7 LAX zp A,X = {addr} 2 3 o o

$B7 LAX zp, y 2 4 o o

$A3 LAX (zp, x) 2 6 o o

$B3 LAX (zp), y 2 5 (+1) o o

$AF LAX abs 3 4 o o

$BF LAX abs, y 3 4 (+1) o o

Operation: Load both the accumulator and the X register with the contents of a memory location.

Test code: Lorenz-2.15/laxa.prg, Lorenz-2.15/laxay.prg, 
Lorenz-2.15/laxix.prg, Lorenz-2.15/laxiy.prg, 
Lorenz-2.15/laxz.prg, Lorenz-2.15/laxzy.prg
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Example:

LAX $8400,Y ;BF 00 84

Equivalent Instructions:

LDA $8400,Y
TAX



Example: load A and X with same value

- 19 -

Loading A and X with the same value is ideal if you manipulate the original value, but later on
need the value again. Instead of loading it again you can either transfer it again from the other
register, or combine A and X again with another illegal opcode. 

LAX $1000,y ;load A and X with value from $1000,y

EOR #$80 ;manipulate A

STA ($fd),y ;store A

LDA #$f8 ;load mask

SAX jump+1 ;store A & X

Also one could do:

LAX $1000,y ;load A and X with value from $1000,y

EOR #$80 ;manipulate A

STA ($fd),y ;store A

TXA ;fetch value again

EOR #$40 ;manipulate

STA ($fb),y ;store



DCP (DCM)

Type:  Combination  of  two operations  with  the  same addressing  mode (Sub-instructions:  DEC,
CMP)

Opc. Mnemonic Function Size Cycles N V - B D I Z C

$C7 DCP zp {addr} = {addr} - 1   A cmp {addr} 2 5 o o o

$D7 DCP zp, x 2 6 o o o

$C3 DCP (zp, x) 2 8 o o o

$D3 DCP (zp), y 2 8 o o o

$CF DCP abs 3 6 o o o

$DF DCP abs, x 3 7 o o o

$DB DCP abs, y 3 7 o o o

Operation: Decrement the contents of a memory location and then compare the result with the A
register.

• N / Z / C are set according to the compare, after the decrement

Test code: Lorenz-2.15/dcma.prg, Lorenz-2.15/dcmax.prg, 
Lorenz-2.15/dcmay.prg, Lorenz-2.15/dcmix.prg, 
Lorenz-2.15/dcmiy.prg, Lorenz-2.15/dcmz.prg, 
Lorenz-2.15/dcmzx.prg, 64doc/dincsbc-deccmp.prg

- 20 -

Example:

DCP $FF ;C7 FF

Equivalent Instructions:

DEC $FF
CMP $FF



Example: decrementing loop counter

Example: decrementing 16bit counter
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X1: .byte $07

x2: .byte $1a

;an effect

-

...

DEC x2

LDA x2

CMP x1

BNE -

can be written as:

;an effect

-

...

LDA x1

DCP x2    ;decrements x2 and compares x2 to A

BNE -

For decrementing a 16 bit pointer it is also of good use: 

LDA #$ff

DCP ptr

BNE +

DEC ptr+1

+

;carry is set always for free



ISC (ISB, INS)

Type: Combination of two operations with the same addressing mode (Sub-instructions: INC, SBC)

Opc. Mnemonic Function Size Cycles N V - B D I Z C

$E7 ISC zp {addr} = {addr} + 1   A = A - {addr} 2 5 o o i  o x

$F7 ISC zp, x 2 6 o o i  o x

$E3 ISC (zp, x) 2 8 o o i  o x

$F3 ISC (zp), y 2 8 o o i  o x

$EF ISC abs 3 6 o o i  o x

$FF ISC abs, x 3 7 o o i  o x

$FB ISC abs, y 3 7 o o i  o x

Operation: Increase memory by one, then subtract memory from accumulator (with borrow). 

• C is affecting the SBC, and SBC sets N / V / Z / C as expected

This instruction inherits the decimal flag dependency from SBC. For the behaviour in decimal mode
see Unintended decimal mode: ISC (ISB, INS).

Test code: Lorenz-2.15/insa.prg, Lorenz-2.15/insax.prg, 
Lorenz-2.15/insay.prg, Lorenz-2.15/insix.prg, 
Lorenz-2.15/insiy.prg, Lorenz-2.15/insz.prg, 
Lorenz-2.15/inszx.prg, 64doc/dincsbc.prg
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Example:

ISC $FF ;E7 FF

Equivalent Instructions:

INC $FF
SBC $FF



Example: incrementing loop counter

Example: increment indexed and load value
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Instead of:

INC counter

LDA counter

CMP #ENDVALUE

BNE next

you can write: (which saves a cycle when counter is in zero-page)

LDA #ENDVALUE

SEC

ISC counter

BNE next

Instead of:

; A is zero and C=0 before reaching here
INC buffer, x
LDA buffer, x

you can write: (which saves a byte if buffer is in regular memory, and is faster)

; A is zero and C=0 before reaching here
ISC buffer, x
EOR #$ff



ANC (ANC2, ANA, ANB)

Type:  Combination of an immediate and an implied command (Sub-instructions: AND, ASL/ROL)

Opc. Mnemonic Function Size Cycles N V - B D I Z C

$0B ANC #imm A = A & #{imm} 2 2 o o o

$2B ANC #imm A = A & #{imm} 2 2 o o o

Operation: ANDs the contents of the A register with an immediate value and then moves bit 7 of A
into the Carry flag.  

• This opcode works basically identically to AND #imm. except that the Carry flag is set to
the same state that the Negative flag is set to. (bit 7 is put into the carry, as if the ASL/ROL
would have been executed)

Test code: Lorenz-2.15/ancb.prg
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Example:

ANC #$AA ;2B AA

Equivalent Instructions:

AND #$AA

; ROL A – not actually executed, set C as if it was



Example: implicit enforcement of carry flag state

Example: remembering a bit
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You can use ANC to simply putting the highest bit of a byte into the carry flag without affecting a
register (by using  ANC #$FF). This can be useful sometimes since not that many instructions
destroy the (C)arry flag as well as the (N)egative flag (mainly mathematical operations, shifting
operations  and  comparison  operations),  in  order  to  'remember'  this  information  during  the
execution of other code (such as some LDA/STA stuff).

A command that does this too is CMP #$80 (as well as CPX and CPY), which non destructively
puts the high bit of a register into Carry as well.

When using an AND instruction before an addition (or any other operation where you might want
to know the state of the carry flag), you might save two cycles (not having to do CLC or SEC) by
using  ANC instead of  AND. Since a cleared high bit in the value used with the  ANC instruction
always leads to a unset carry flag after this operation, you can take advantage of that. An example:

LDA value

ANC #$0f ;Carry flag is always set to 0 

;after this op.

ADC value2 ;Add a value. CLC not needed!

STA result

Another case like this is when you want to set the A register to #$00 specifically, and also happen
to want to have the carry cleared: 

ANC #0 ;Carry always cleared after this op, 

;and A register always set to zero.



ALR (ASR)

Type:  Combination of an immediate and an implied command (Sub-instructions: AND, LSR)

Opc. Mnemonic Function Size Cycles N V B D I Z C

$4B ALR #imm A = (A & #{imm}) / 2 2 2 o o o

Operation: AND the contents of the A register with an immediate value and then LSRs the result.

• Bit 1 (after the AND) is shifted into the carry flag
• N and Z are set after the shift

Test code: Lorenz-2.15/alrb.prg

Example: right shift and mask
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Example:

ALR #$FE ;4B FE

Equivalent Instructions:

AND #$FE

LSR A

Whenever you need to shift and influence the carry afterwards, you can use ALR for that, and if
you even need to apply an and-mask beforehand, you are extra lucky and can do 3 commands by
that:

ALR #$fe ;-> A & $fe = $fe -> lsr -> carry is cleared

; as bit 0 was not set before lsr

… same as … 

AND #$ff

LSR

CLC



Example: fetch 2 bits from a byte

Example: add offset depending on LSB
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Another nice trick to transform a single bit into a new value (good for adding offsets depending
on the value of a single bit) offset is the following: 

LDA xposl ;load a value

ALR #$01 ;move LSB to carry and clear A

BCC +

LDA #$3f ;carry is set

+

ADC #stuff ;things will work sane, as offset 

;includes already the carry 

As you can see we have now either loaded $00 or $40 (carry!) to A depending on the state of bit
0, that is ideal for e.g. when we want to load from a different bank depending on if a position is
odd or even. As you see, the above example is even faster than this (as the shifting always takes 6
cycles, whereas the above example takes 5/6 cycles): 

LDA xposl

ALR #$01

ROR

LSR

ADC #stuff ;things will work sane as carry is

;always clear (upper bits are masked)

LDA #%10110110

LSR

ALR #$03*2

This will mask out and shift down bits 2 and 3. Note that the mask is applied before shifting,
therefore the mask is multiplied by two.



ARR

Type:  Combination of an immediate and an implied command (Sub-instructions: AND, ROR)

Opc. Mnemonic Function Size Cycles N V - B D I Z C

$6B ARR #imm A = (A & #{imm}) / 2 2 2 o o i o x

note to ARR: part of this command are some ADC mechanisms. following effects appear after AND
but before ROR: the V-Flag is set according to (A and #{imm}) + #{imm}, bit 0 does NOT go into
carry, but bit 7 is exchanged with the carry.

The following applies to when the decimal flag is clear, for the behaviour in decimal mode see
Unintended decimal mode: ARR.

ARR ANDs the  accumulator  with  an  immediate  value  and  then  rotates  the  content  right.  The
resulting carry is however not influenced by the LSB as expected from a normal rotate. The Carry
will be equal to the state of bit 7 before (or bit 6 after) the rotate, the state of the overflow-flag
depends on whether the rotate changes bit 6, and will be set like shown in the following table:

Input before ROR Output

Carry Bit 7 Bit 6 Carry

= Input Bit 7

Overflow

= Input Bit 7 ^ Input Bit 6

Bit 7

= Input Carry

Bit 6

= Input Bit 7

0 0 0 0 0 0 0

0 0 1 0 1 0 0

0 1 0 1 1 0 1

0 1 1 1 0 0 1

1 0 0 0 0 1 0

1 0 1 0 1 1 0

1 1 0 1 1 1 1

1 1 1 1 0 1 1

Test code: CPU/asap/cpu_decimal.prg, Lorenz-2.15/arrb.prg
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Example:

ARR #$7F ;6B 7F

Equivalent Instructions:

AND #$7F
ROR A ; flags are different with ARR, see the

; above table



Example: rotating 16 bit values
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LDA #>addr

LSR

STA $fc

ARR #$00 ;A = A & $00 -> ror A

STA $fb

… is the same as … 

LDA #>addr

LSR

STA $fc

LDA #$00

ROR

STA $fb

Note: Again, you can influence the final state of the carry by either using #$00 or #$01 for the
LDA ($00 or  $80 in case of  ARR, but the later only if A has bit 7 set as well, so be carefully
here).



Example: load register depending on carry

Example: shift zeros or ones into accumulator
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If you need to load a register depending on some branch, you might be able to save some cycles.
Imagine you have the following to load Y depending on the state of the carry:

CMP $1000

BCS +

LDY #$00

BEQ ++ ; jump always

+

LDY #$80

++

This can be solved in less cycles and less memory:

CMP $1000

ARR #$00

TAY

Due  to  the  fact  that  the  carry  resembles  the  state  of  bit  7  after  ARR is  executed,  one  can
continuously shift in zeroes or ones into a byte:

LDA #$80

SEC

ARR #$ff ; -> A = $c0 -> sec

ARR #$ff ; -> A = $e0 -> sec

ARR #$ff ; -> A = $f0 -> sec

...

LDA #$7f

CLC

ARR #$ff ; -> A = $3f -> clc

ARR #$ff ; -> A = $1f -> clc

ARR #$ff ; -> A = $0f -> clc



SBX (AXS, SAX, XMA)

Type:  Combination of an immediate and an implied command (Sub-instructions: CMP, DEX)

Opc. Mnemonic Function Size Cycles N V - B D I Z C

$CB SBX #imm X = A & X - #{imm} 2 2 o o o

Operation: SBX ANDs the contents of the A and X registers (leaving the contents of A intact),
subtracts an immediate value, and then stores the result in X. ... A few points might be made about
the action of subtracting an immediate value.  It actually works just like the CMP instruction, except
that CMP does not store the result of the subtraction it performs in any register. 

• This subtract operation is not affected by the state of the Carry flag, though it does affect the
Carry flag.  It does not affect the Overflow flag. (Flags are set like with CMP, not SBC)

• N and Z are set according to the value ending up in X

Another property of this opcode is that it doesn't respect the decimal mode, since it is derived from
CMP rather than SBC. So if you need to perform table lookups and arithmetic in a tight interrupt
routine there's no need to clear the decimal flag in case you've got some code running that operates
in decimal mode.

Test code: Lorenz-2.15/sbxb.prg, 64doc/sbx.prg, 64doc/vsbx.prg, 
64doc/sbx-c100.prg
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Example:

SAX #$5A        ;CB 5A

Equivalent Instructions:

STA $02
TXA
AND $02
SEC
SBC #$5A
TAX
LDA $02

Note: Memory location $02 would not be altered by the SAX opcode.

Example:

SBX #$5A ;CB 5A

Equivalent Instructions:

STA $02 ; save accumulator
TXA ; hack because there is no 'AND WITH X'
AND $02 ; instruction
CMP #$5A ; set flags like CMP
PHP ; save flags
SEC
CLD ; subtract without being affected by
SBC #$5A ; decimal mode
TAX
LDA $02 ; restore accumulator
PLP ; restore flags

Note:  SBX is not easily expressed entirely correct using legal opcodes. Memory location  $02
would not be altered by the SBX opcode, and it would not use the stack.



Example: decrement X by more than 1
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Sometimes you need/want to decrease the X register by more than one. That is often done by the
following piece of code:

TXA

SEC

SBC #$xx ;where xx is (obviously) the value

;to decrease by

TAX

This procedure takes 8 cycles (and 5 bytes in memory). If the value of the carry flag is always
known at this point in the code, it can be removed and the snippet would then take 6 cycles (and 4
bytes in memory). However, you can use SBX like this:

And the modified code snippet using SBX instead looks like this:

LDA #$ff ;Next opcode contains a implicit AND with

;the A register, so turn all bits ON!

SBX #$xx ;where xx is the value to decrease by

This code kills the A register of course, but so does the 'standard' version above. It can be made
even shorter by using a 'TXA' instruction instead of the 'LDA #$FF'. That works since X and A
will be equal after the 'TXA', and ANDing a value with itself produces no change, hence the AND
effect of SBX is 'disarmed' and the subtraction will proceed as expected:

TXA

SBX #$xx

Note that in this case you do not have to worry about the carry flag at all, and all in all the whole
procedure takes only 4 cycles (and 3 bytes in memory)



Example: decrement nibbles
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Imagine you have a byte that is divided into two nibbles (just what you often use in 4×4 effects),
now you want to decrement each nibble, but when the low nibble underflows, this will decrement
the high nibble as well, here the SBX command can help to find out about that special case:

LDA #$0f ;2 set up mask beforehand,

;  can be reused for each turn

STA $02 ;2

LDA $0400,y ;4

BIT $02 ;2 apply mask without destroying A

BNE + ;2

CLC ;2

ADC #$10 ;2

+

SEC ;2 we need to set carry

SBC #$11 ;2

;= 20

 … can be substituted by … 

LDA $0400,y ;4 load value

LDX #$0f ;2 set up mask

SBX #$00 ;2 check if low nibble underflows

;  -> X = A & $0f

BNE + ;2 all fine, decrement both nibbles

;  the cheap way, carry is set!

SBC #$f0 ;2 do wrap around by hand

SEC ;2

+

SBC #$11 ;2 decrement both nibbles,

;  carry is set already by sbx

;=16



Example: apply a mask to an index
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Furthermore, the SBX command can also be used to apply a mask to an index easily:

LDX #$03 ;mask

LDA val1 ;load value

SBX #$00 ;mask out lower 2 bits -> X

LSR ;A is untouched, so we can continue

;doing stuff with A

LSR

STA val1

LDA colours,x ;fetch colour from table

instead of (which takes 3 cycles more):

LDA val1

AND #$03

TAX ;set up index

LSR val1 ;A is clobbered, so shift direct

LSR val1

LDA colours,x

The described case makes it easy to decode 4 multicolour pixel pairs by always setting up an
index from the lowest two bits and fetching the appropriate colour from a previously set up table.



SBC (USBC, USB)

Type:  Combination of an immediate and an implied command (Sub-instructions: SBC, NOP)

Opc. Mnemonic Function Size Cycles N V - B D I Z C

$EB SBC #imm A = A - #{imm} 2 2 o o i o x

Operation: subtract immediate value from accumulator with carry. Same as the regular SBC.

Test code: Lorenz-2.15/sbcb-eb.prg
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LAS (LAR)

Type: Combinations of STA/TXS and LDA/TSX

Opc. Mnemonic Function Size Cycles N V - B D I Z C

$BB LAS abs, y A,X,SP = {addr} & SP 3 4 (+1) o o

Operation: AND memory with stack pointer, transfer result to accumulator, X register and stack
pointer.

• N and Z are set as expected by a load instruction

Test code: CPU/asap/cpu_las.prg, Lorenz-2.15/lasay.prg

Note: LAS is called as 'probably unreliable' in one source - this does not seem to be the case though

It can be the case that the stack is not used in a main routine, since it is cheaper to store things in
the zeropage. Of course when a subroutine is called or an interrupt triggers the return address (and
status register in case of an IRQ) is stored on the stack, but after returning to the main loop the
stackpointer (SP) is back to the same value again. This means that you can change the SP at will in
the main loop without messing things up. For example, you can use it as temporary storage of the X
register with TXS/TSX. This makes it possible to use LAS (and TAS).
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Example:

LAS $C000, Y ;BB AA

Equivalent Instructions:

TSX
TXA
AND $C000, Y
TAX
TXS



Example: cycle an index within bounds
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If you want to cycle an index and wrap around to zero at a number that is a power of two, you
could do that with  LAS. For example to cycle from 0-15, suppose we start with SP=$F7 (any
value will work):

LAS mask,y    ; if Mask is one page filled with $0f,
; this brings the SP to $07 (and A and X
; as well) for any Y.

DEX ; X = $06 

TXS ; SP is now $06, so the next time 
; 'lda table,x' will pick the next value

LDA table, x ; use X as index

SP and X after the LAS instruction will always remain in the range 0-$0F, no need to check for 
that!

Instead of the LDA table, x one could use PLA if the data is on the stack and no interrupt can 
take place during this code snippet.Then DEX should be replaced by e.g. SBX #$11 to bring the 
SP to a safe area, to ensure the data on the stack is not messed up in other parts of the code.



NOP (NPO, UNP)

Type: no effect

Opc. Mnemonic Function Size Cycles N V - B D I Z C

$1A NOP No operation 1 2

$3A NOP No operation 1 2

$5A NOP No operation 1 2

$7A NOP No operation 1 2

$DA NOP No operation 1 2

$FA NOP No operation 1 2

NOP (DOP, SKB)

Type: no effect

Opc. Mnemonic Function Size Cycles N V - B D I Z C

$80 NOP #imm Fetch #imm 2 2

$82 NOP #imm Fetch #imm 2 2

$C2 NOP #imm Fetch #imm 2 2

$E2 NOP #imm Fetch #imm 2 2

$89 NOP #imm Fetch #imm 2 2

Note: One of the “classic” sources claims that NOP opcodes $82, $C2, $E2 may be JAMs.  Since
neither  looking at  the way these opcodes are decoded can back this  up,  nor any other sources
corroborate this, it is probably plain wrong, or at least must be true only on very few machines. On
all others, these opcodes always perform 'no operation'. It is perhaps a good idea to avoid using
them anyway.

NOP (DOP, SKB, IGN)

Opc. Mnemonic Function Size Cycles N V - B D I Z C

$04 NOP zp Fetch {addr} 2 3

$44 NOP zp Fetch {addr} 2 3

$64 NOP zp Fetch {addr} 2 3
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Opc. Mnemonic Function Size Cycles N V - B D I Z C

$14 NOP zp, x Fetch {addr} 2 4

$34 NOP zp, x Fetch {addr} 2 4

$54 NOP zp, x Fetch {addr} 2 4

$74 NOP zp, x Fetch {addr} 2 4

$D4 NOP zp, x Fetch {addr} 2 4

$F4 NOP zp, x Fetch {addr} 2 4

Operation: NOP zp and NOP zp,x actually perform a read operation.  It's just that the value read
is not stored in any register.

NOP (TOP, SKW, IGN)

Type: no effect

Opc. Mnemonic Function Size Cycles N V - B D I Z C

$0C NOP abs Fetch {addr} 3 4

Opc. Mnemonic Function Size Cycles N V - B D I Z C

$1C NOP abs, x Fetch {addr} 3 4 (+1)

$3C NOP abs, x Fetch {addr} 3 4 (+1)

$5C NOP abs, x Fetch {addr} 3 4 (+1)

$7C NOP abs, x Fetch {addr} 3 4 (+1)

$DC NOP abs, x Fetch {addr} 3 4 (+1)

$FC NOP abs, x Fetch {addr} 3 4 (+1)

Operation: These actually perform a read operation.  It's just that the value read is not stored in any
register.  Further, opcode $0C uses the absolute addressing mode.  The two bytes which follow it
form the absolute address.  All the other 3 byte NOP opcodes use the absolute indexed X addressing
mode. If a page boundary is crossed, the execution time of one of these NOP opcodes is upped to 5
clock cycles.

Test code: Lorenz-2.15/nopa.prg, Lorenz-2.15/nopax.prg, 
Lorenz-2.15/nopb.prg, Lorenz-2.15/nopn.prg, Lorenz-2.15/nopz.prg, 
Lorenz-2.15/nopzx.prg
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Example: acknowledge IRQ
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If for some reason you want to acknowledge a timer IRQ and can not afford changing a register or
the CPU status, you can use the fact that some of these NOPs actually perform a read operation:

NOP $DCOD ;0C 0D DC



JAM (KIL, HLT, CIM, CRP)

Type: lock-up

Opc. Mnemonic Function Size Cycles N V - B D I Z C

$02 JAM CPU lock-up 1 -

$12 JAM CPU lock-up 1 -

$22 JAM CPU lock-up 1 -

$32 JAM CPU lock-up 1 -

$42 JAM CPU lock-up 1 -

$52 JAM CPU lock-up 1 -

$62 JAM CPU lock-up 1 -

$72 JAM CPU lock-up 1 -

$92 JAM CPU lock-up 1 -

$B2 JAM CPU lock-up 1 -

$D2 JAM CPU lock-up 1 -

$F2 JAM CPU lock-up 1 -

Operation: When one of these opcodes is executed, the byte following the opcode will be fetched,
data-  and address  bus  will  be set  to  $ff  (all  1s)  and program execution  ceases.   No hardware
interrupts will execute either. Only a reset will restart execution. This opcode leaves no trace of any
operation performed! No registers or flags affected.

Test code: CPU/cpujam/cpujamXX.prg

Example: stop execution

Simulation link:
http://visual6502.org/JSSim/expert.html?graphics=f&a=0&steps=12&d=027fff00&loglevel=4
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Sometimes  in  a  very memory constrained situation  (like  a  4k  demo),  you may want  to  stop
execution of whatever is running with least effort – this can be achieved by using one of the JAM
opcodes. Keep in mind though that only the CPU will stop.

LDA #0

STA $D418

JAM ;02

http://visual6502.org/JSSim/expert.html?graphics=f&a=0&steps=12&d=027fff00&loglevel=4


Unstable Opcodes

Out of all opcodes, just  seven fall into the so called 'unstable' category.  This is where in earlier
documents often the half esoteric black magic started, and what took most time and effort to update
and fix for the current state of this version of the truth:  Only two of those seven opcodes are
actually unstable in the sense that they may produce a truly unpredictable result. The other
five opcodes actually produce predictable results – but the conditions under which they do that and
the produced results are a bit unexpected.  All seven opcodes can be used safely when certain
preconditions are met.

'unstable address high byte' group

There are five opcodes in this group. None of these opcodes affect the accumulator, the X register,
the  Y register,  or  the  processor  status  register.  They have  two ‘instabilities’ which  have  to  be
'disarmed' by careful programming.

• If the target address crosses a page boundary because of indexing, the instruction may not
store  at  the  intended  address.  Instead  the  high  byte  of  the  target  address  will  get
incremented  as  expected,  and  then  ANDed with  the  value  stored.  For  this  reason  you
should generally keep your index in a range that page boundaries are not crossed.

• Sometimes the actual value is stored in memory and the AND with <addrhi+1> part drops
off (ex. SHY becomes true STY). This happens when the RDY line is used to stop the CPU
(pulled low), i.e. either a 'bad line'  or sprite DMA starts in the second last cycle of the
instruction. 'For example, it never seems to occur if either the screen is blanked or C128
2MHz mode is enabled.' For this reason you will have to choose a suitable target address
based on what kind of values you want to store.  'For $fe00 there's no problem, since
anding with $ff is the same as not anding. And if your values don't mind whether they are
anded, e.g. if they are all $00-$7f for shy $7e00,x, there is also no difference whether the
and  works  or  not.'  If  you  make  sure  no  DMA starts  when  any  of  these  opcodes
executes, the value written is always ANDed with the highbyte of the target address,
plus one.

SHA (zp), y TAS abs, y SHY abs, x SHX abs, y SHA abs,y 

Opcode $93 $9b $9c $9e $9f

Value A & X A & X Y X A & X

Cycle N 5 4 4 4 4

Highbyte of address written to Value written

No DMA in Cycle N DMA in Cycle N No DMA in Cycle N DMA in Cycle N

Page not crossed {H} {H} Value & {H+1} Value

Page crossed {H+1} & Value {H+1} & Value Value & {H+1} Value
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'To explain what's going on take a look at LDA ABX and STA ABX first.

 LDA ABX takes  4 cycles  unless a page wrap occurred (address+X lies in  another  page than
address) in which case the value read during the 4th cycle (which was read with the original high
byte) is discarded and in the 5th cycle a read is made again, this time from the correct address.
During the 4th cycle the high address byte is incremented in order to have a correct high byte if the
5th cycle is necessary. The byte read from memory is buffered and copied to A during the read of
the next command's opcode.

 But there's a problem with storage commands: they need to put the value to write on the internal
bus which is used for address computations as well. To avoid collisions STA ABX contains a fix-up
which makes it always take 5 cycles (the value is always written in the 5th cycle as the high byte is
computed in the 4th cycle).

 This fix-up requires some transistors on the CPU; the guys at MOS forgot (or were unable?) to
make them detect STX ABY (which becomes SHX) and a few others, they are missing that fix-up so
this results in a collision between the value and high address byte computation.'
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SHA (AXA, AHX, TEA)

Type: Combinations of STA/STX/STY

Opc. Mnemonic Function Size Cycles N V - B D I Z C

$93 SHA (zp), y {addr} = A & X & {H+1} 2 6

$9F SHA abs, y {addr} = A & X & {H+1} 3 5

Operation: This opcode stores the result of A AND X AND the high byte of the target address of
the operand +1 in memory.

Instabilities: 
• The value written is ANDed with &{H+1}, except when the RDY line goes low in the 4th

(opcode $9f) or 5th (opcode $93) cycle.
• When adding Y to the target address causes a page boundary crossing, the highbyte of the

target address is incremented by one (as expected), and then ANDed with (A & X).

Test code:
• general: Lorenz-2.15/shaay.prg, Lorenz-2.15/shaiy.prg
• &{H+1} drop off: CPU/sha/shazpy2.prg CPU/sha/shazpy3.prg 

CPU/sha/shaabsy2.prg CPU/sha/shaabsy3.prg CPU/sha/shazpy4.prg
CPU/sha/shaabsy4.prg

• page boundaries: CPU/sha/shazpy1.prg CPU/sha/shaabsy1.prg 
CPU/sha/shazpy5.prg CPU/sha/shaabsy5.prg
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Example:

SHA $7133,Y ;9F 33 71

Equivalent Instructions:

PHP ; save flags and accumulator
PHA
STX $02 ; hack which is needed because there is
AND $02 ; no 'AND-WITH-X' instruction
AND #$72 ; High-byte of Address + 1
STA $7133,Y
LDX $02 ; restore X-register
PLA ; restore flags and accumulator
PLP

Note: Memory location $02 would not be altered by the SHA opcode and it would not use the
stack.



Example: SAX abs, y

Example: SAX (zp), y
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When using $FE00 as address, the value stored would be ANDed by $FF and the SHA turns into a
SAX:

SHA $FE00,Y ; SAX $FE00,Y

When using $FE00 as address, the value stored would be ANDed by $FF and the SHA turns into a
SAX:

LDA #$FE
STA $03
LDA #$00
STA $02
...
SHA ($02),Y ; SAX ($02),Y



SHX (A11, SXA, XAS, TEX)

Type: Combinations of STA/STX/STY

Opc. Mnemonic Function Size Cycles N V - B D I Z C

$9E SHX abs, y {addr} = X & {H+1} 3 5

Operation: AND X register with the high byte of the target address of the argument + 1. Store the
result in memory.

Instabilities: 
• The value written is ANDed with &{H+1}, except when the RDY line goes low in the 4th

cycle.
• When adding Y to the target address causes a page boundary crossing, the highbyte of the

target address is incremented by one (as expected), and then ANDed with X.

Test code:
• general: CPU/asap/cpu_shx.prg, Lorenz-2.15/shxay.prg
• &{H+1} drop off: CPU/shxy/shxy2.prg, CPU/shxy/shxy3.prg, 

CPU/shxy/shxy4.prg, CPU/shxy/shx-t2.prg, CPU/shxy/shx-
test.prg

• page boundaries: CPU/shxy/shxy1.prg, CPU/shxy/shxy5.prg

Simulation links:
• &{H+1} drop off:

http://visual6502.org/JSSim/expert.html?
graphics=f&a=0&steps=20&d=a27fa0f39e0211&logmore=rdy&rdy0=15&rdy1=16

• page boundary crossing anomaly:
http://visual6502.org/JSSim/expert.html?graphics=f&a=0&steps=18&d=a27fa0f39e0f11

• &{H+1} drop off, plus page boundary crossing anomaly:
http://visual6502.org/JSSim/expert.html?
graphics=f&a=0&steps=20&d=a27fa0f39e0f11&logmore=rdy&rdy0=15&rdy1=16
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Example:

SHX $6430,Y ;9E 30 64

Equivalent Instructions:

PHP ; save flags and accumulator
PHA
TXA
AND #$65 ; High byte of Address + 1
STA $6430,Y
PLA ; restore flags and accumulator
PLP

Note: The SHX opcode would not use the stack.

http://visual6502.org/JSSim/expert.html?graphics=f&a=0&steps=20&d=a27fa0f39e0f11&logmore=rdy&rdy0=15&rdy1=16
http://visual6502.org/JSSim/expert.html?graphics=f&a=0&steps=20&d=a27fa0f39e0f11&logmore=rdy&rdy0=15&rdy1=16
http://visual6502.org/JSSim/expert.html?graphics=f&a=0&steps=18&d=a27fa0f39e0f11
http://visual6502.org/JSSim/expert.html?graphics=f&a=0&steps=20&d=a27fa0f39e0211&logmore=rdy&rdy0=15&rdy1=16
http://visual6502.org/JSSim/expert.html?graphics=f&a=0&steps=20&d=a27fa0f39e0211&logmore=rdy&rdy0=15&rdy1=16


Example: STX abs, y

Example: Sync with raster beam (remove cycle variance)

The following snippets can be used as a replacement for the commonly used “half variance” $D012
polling loop, to synchronise the code to a fixed position before setting up a timer that is then synced
to the raster beam.
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When using $FE00 as address, the value stored would be ANDed by $FF and the SHX turns into a
STX:

SHX $FE00,Y ; STX $FE00,Y

You can sync to the raster beam in order to remove jitter in just 9 bytes by doing this:

* = $0f00 ; Some address with (H+1) & 1 = 0
; and (H+1) & $10 = $10

LDY #$00
loop:  LDX #$11

SHX cont, y
cont: BPL loop

It uses the fact that we will AND the written value with H+1 unless a badline pauses the CPU
between the third and fourth cycle of shx. The latter then changes the "bpl" into an "ora" and
drops us out of the loop at horizontal position 61.
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This variant works at any address. It is required that $A0 holds a value <$80 before the routine is
started. A good init value would be $01, since this will be restored by the last loop iteration.

The code can be written in two ways, the following two snippets are the same piece of code. The
first shows what executes when the code was started:

loop = * + 1 
LDX #$B5 ; initialize X
SBC #$9E ; SBC-opcode $eb (Accu does not matter)
LDY #$00 ; initialize Y
BPL loop

now the BPL branches to the operand of the LDX, so the loop looks as follows:

!byte $a2 ; LDX
loop: LDA $EB,X
    SHX $00A0,Y

BPL loop

The SHX stores a value to zp-adress $A0. Now the unintended SBC-opcode reveals its real magic:
the hex-value $EB. Performing the LDA $EB,X, with X=$B5, ends up reading the value from
$A0. Since SHX does not influence the flags, the branch solely depends on what was read with
LDA $EB,X – which in turn is the value that was written by the SHX in the loop iteration before.
Now as long as we have the &H+1 in play when executing the SHX, the value stored to $A0 will
be  $01 (since  H+1=$01 and  X=$B5). When the  &H+1 does not occur, the full value  $B5 is
written to $A0, which is read in the next loop iteration, effectively ending the whole loop ($B5 ->
Accu sets the N-flag!).
 
This syncing approach works just like the variant above: when a badline pauses the CPU on the 4 th

SHX cycle,  value  $B5 is  written  to  $A0,  so  the  cycle  when  this  happens  is  known,  and
consequently also the cycle position off the loop’s end.



SHY (A11, SYA, SAY, TEY)

Type: Combinations of STA/STX/STY

Opc. Mnemonic Function Size Cycles N V - B D I Z C

$9C SHY abs, x {addr} = Y & {H+1} 3 5

Operation: AND Y register with the high byte of the target address of the argument + 1. Store the
result in memory.

Instabilities: 
• The value written is ANDed with &{H+1}, except when the RDY line goes low in the 4th

cycle.
• When adding X to the target address causes a page boundary crossing, the highbyte of the

target address is incremented by one (as expected), and then ANDed with Y.

Test code: 
• general: CPU/asap/cpu_shx.prg, Lorenz-2.15/shyax.prg
• &{H+1} drop off: CPU/shxy/shyx2.prg, CPU/shxy/shyx3.prg, 

CPU/shxy/shyx4.prg
• page boundaries: CPU/shxy/shyx1.prg, CPU/shxy/shyx5.prg
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Example:

SHY $7700,X ;9C 00 77

Equivalent Instructions:

PHP ; save flags and accumulator
PHA
TYA
AND #$78 ; High byte of Address + 1
STA $7700,X
PLA ; restore flags and accumulator
PLP

Note: the SHY opcode would not use the stack.



Example: STY abs, x
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When using $FE00 as address, the value stored would be ANDed by $FF and the SHY turns into
a STY:

SHY $FE00,X ; STY $FE00,X



Example: Sync with raster beam (remove cycle variance)

The following snippet can be used as a replacement for the commonly used “half variance” $D012
polling loop, to synchronise the code to a fixed position before setting up a timer that is then synced
to the raster beam.
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This variant works at any address. It is required that $A2 holds a value <$80 before the routine is
started. A good init value would be $01, since this will be restored by the last loop iteration.

The code can be written in two ways, the following two snippets are the same piece of code. The
first shows what executes when the code was started:

loop = * + 1 
LDY #$B5 ; initialize Y
LDX #$9C
LDX #$00 ; initialize X
BPL loop

now the BPL branches to the operand of the LDY, so the loop looks as follows:

!byte $a0 ; LDY
loop: LDA $A2,X
    SHY $00A2,X

BPL loop

The  SHY stores a value to zp-adress  $A2. Performing the  LDA $A2,X, with  X=$00, ends up
reading the value from $A2. Since SHY does not influence the flags, the branch solely depends on
what was read with LDA $A2,X – which in turn is the value that was written by the SHY in the
loop iteration before. Now as long as we have the  &H+1 in play when executing the  SHY, the
value stored to $A2 will be $01 (since H+1=$01 and Y=$B5). When the &H+1 does not occur,
the full value $B5 is written to $A2, which is read in the next loop iteration, effectively ending
the whole loop ($B5 -> Accu sets the N-flag!).
 
This syncing approach works just like the variants given above: when a badline pauses the CPU
on the 4th SHX cycle, value $B5 is written to $A2, so the cycle when this happens is known, and
consequently also the cycle position of the loop’s end.



TAS (XAS, SHS)

Type: Combinations of STA/TXS and LDA/TSX

Opc. Mnemonic Function Size Cycles N V - B D I Z C

$9B TAS abs, y SP = A & X   {addr} = A & X & {H+1} 3 5

Operation: This opcode ANDs the contents of the A and X registers (without changing the contents
of either register) and transfers the result to the stack pointer.  It then ANDs that result with the
contents of the high byte of the target address of the operand +1 and stores that final result  in
memory.

Instabilities: 
• The value written is ANDed with &{H+1}, except when the RDY line goes low in the 4th

cycle.
• When adding Y to the target address causes a page boundary crossing, the highbyte of the

target address is incremented by one (as expected), and then ANDed with (A & X).
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Example:

TAS $7700,Y ; 9B 00 77

Equivalent Instructions:

; save flags, A, X
PHP
STA $03 ; save A
PLA
STA $02 ; save flags
STX $04 ; save X

LDA $03 ; A
AND $04 ; and with X
TAX ; remember A & X
AND #$78 ; High-byte of Address + 1
STA $7700,Y ; addr = A & X & H+1
TXS ; sp = A & X

; restore flags, A, X
LDX $04 ; X
LDA $03 ; flags
PHA
LDA $02 ; akku
PLP ; restore flags

Note: The above code does in many ways not accurately resemble how the  TAS opcode works
exactly, memory location $02-$04 would not be altered and the stack would not be used.



Test code: 
• general: Lorenz-2.15/shsay.prg
• &{H+1} drop off: CPU/shs/shsabsy2.prg, CPU/shs/shsabsy3.prg,  

CPU/shs/shsabsy4.prg
• page boundaries: CPU/shs/shsabsy1.prg, CPU/shs/shsabsy5.prg

Example: SAX abs, y with SP=A & X
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When using $FE00 as address, the value stored would be ANDed by $FF and the TAS turns into a
SAX, plus it moves the result of  ANDing A and X into the stackpointer. This can be extremely
powerful if you can afford trashing the stackpointer (ie saving/restoring it) in a piece of code
where you want to compute A & X and reuse the resulting value a few times, preferably in the X
register.

TSX ; save stackpointer
STX temp

LDA GLOBALMASK
LDX LOCALMASK
TAS  $FE00,Y ; SAX $FE00,Y stores A & X & ($FE + 1)

; also sets SP = A & X
...
TSX ; get A & X
LDY data0,x
STY bitmap+0
...
TSX ; get A & X
LDY data1,x
STY bitmap+1
...

LDX temp ; restore stackpointer
TXS



'Magic Constant' group

The two opcodes in this group are combinations of an immediate and an implied command, and
involve  a  highly  unstable  'magic  constant',  which  is  chip  and/or  temperature  (and  thus  time!)
dependent. The behaviour also depends on the RDY line, which needs extra caution. 

These two opcodes are the only ones that can be considered truly unstable.

• The ‘magic constant’ must be considered to be totally random. Although often reported as
being eg 0xee, 0xef or 0xff, you should not rely on any of this being the case. You must use
these opcodes in a way so the ‘magic constant’ is taken out of the equation. Do not rely
on reading the ‘magic constant’ either, as it may change with time and temperature.

• The ‘magic constant’ somehow interacts with the RDY line. In particular bits 0 and 4 seem
to be “weaker” than the other  bits,  and may drop to  0 when a DMA starts.  It may be
notable that this behaviour can not be reproduced in visual6502, which hints on it
being some analogue side effect that the simulation does not cover. This also contributes
to the instabilities.
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ANE (XAA, AXM)

Type:  Combination of an immediate and an implied command

Opc. Mnemonic Function Size Cycles N V - B D I Z C

$8B ANE #imm A = (A | {CONST}) & X & #{imm} 2 2 o o

Operation: This opcode ORs the A register with CONST, ANDs the result with X. ANDs the result
with an immediate value, and then stores the result in A.

• N and Z are set according to the value of the accumulator before the instruction executed

Instability: CONST is chip- and/or temperature dependent (common values may be $ee, $00, $ff
…). Some dependency on the RDY line. Bit 0 and Bit 4 are “weaker” than the other bits, and may
drop to 0 in the first cycle of DMA when RDY goes low.

Do not use ANE with any immediate value other than 0, or when the accumulator value is $ff 
(both take the magic constant out of the equation)! (Or, more accurately, these are safe if all bits 
that could be 0 in A are 0 in either the immediate value or X or both.)

Test code: 
• general: CPU/asap/cpu_ane.prg, Lorenz-2.15/aneb.prg
• temperature dependency: general/ane-lax/ane-lax.prg
• dependency on RDY line: CPU/ane/ane.prg, CPU/ane/ane-

none.prg, CPU/ane/ane-border.prg

Simulation Links:
• read magic constant: 

http://visual6502.org/JSSim/expert.html?graphics=f&a=0&steps=13&d=a200a9  ff8  bffea  

for some very detailed info on how this opcode works look here: 
http://visual6502.org/wiki/index.php?title=6502_Opcode_8B_(XAA,_AN  E)  
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Example:

ANE #{IMM} ;8B {IMM}

Equivalent Instructions:

ORA #{CONST}

AND #{IMM}

STX $02 ; hack because there is no 'AND WITH X'

AND $02 ; instruction

Note: Memory location $02 would not be altered by the ANE opcode.

http://visual6502.org/wiki/index.php?title=6502_Opcode_8B_(XAA,_ANE)
http://visual6502.org/wiki/index.php?title=6502_Opcode_8B_(XAA,_ANE)
http://visual6502.org/JSSim/expert.html?graphics=f&a=0&steps=13&d=a200a9ff8bffea
http://visual6502.org/JSSim/expert.html?graphics=f&a=0&steps=13&d=a200a9ff8bffea
http://visual6502.org/JSSim/expert.html?graphics=f&a=0&steps=13&d=a200a9ff8bffea


Real world code

Interestingly, the unstable ANE #imm opcode can actually be found in code “in the wild”:

• The Ocean/Imagine tape loader (Rambo II, Comic Bakery, Yie Ar Kung Fu) uses it, albeit in
a way that is considered stable.

• The Mastertronic variant of the “burner” tape loader (used eg for the games “Spectipede”,
“BMX Racer”) uses it in a way that is considered unstable. For the game to load, the high
nibble of the “magic constant” must be $4, $5, $E or $F and bit 0 must be 1, bits 3, 2, 1 are
"don't care". That means the commonly assumed value  $EE for the “magic constant” will
not work, but $EF does.

• The game “Turrican 3”  by Smash Designs  uses  ANE #imm in  an unstable  way in the
scrolling routine of levels 1 and 2. It looks like the code expects the “magic constant” to be
$EF, but luckily it will still “work” when it is $EE (but will break completely when other
bits are different).

Emulation

For Emulation the best compromise between "proper emulation" and "making things work" seems
to be to use a "magic contant" of $EF in regular cycles, and $EE in the RDY cycle.

Example: clear A

Example: A = X AND immediate
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ANE #0 ; 8B 00

is equivalent to

LDA #0

… and is safe to use as using 0 as the immediate value takes the 'magic constant'  out of the
equation. 

;LDA #$ff   assuming A=$ff from previous operation

ANE #$0f ; 8B 0f  A = (A | const) & X & $0f

is equivalent to

TXA

AND #$0f

… and is safe to use as a value of $ff in accumulator takes the 'magic constant' out of the equation.



Example: read the 'magic constant'
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To determine the 'magic constant' which is in effect on your particular machine, you can do this:

LDA #0

LDX #$ff

ANE #$ff ; A contains the magic constant

This is mostly useful for experimenting and proving the constant is actually different on different
set-ups.  Do not rely on this value!  It may not be stable even on the same chip and depend on
temperature and/or the supplied voltage.



LAX #imm (ATX, LXA, OAL, ANX)

Type:  Combination of an immediate and an implied command

Opc. Mnemonic Function Size Cycles N V - B D I Z C

$AB LAX #imm A,X = (A | {CONST}) & #{imm} 2 2 o o

Operation:  This opcode ORs the A register with CONST, ANDs the result  with an immediate
value, and then stores the result in both A and X.

• N and Z are set according to the value of the accumulator before the instruction executed

Instability: CONST is chip- and/or temperature dependent (common values may be $ee, $00, $ff,
…). Some dependency on the RDY line. Bit 0 and Bit 4 are “weaker” than the other bits, and may
drop to 0 in the first cycle of DMA when RDY goes low.

Do not use LAX #imm with any immediate value other than 0, or when the accumulator value
is $ff (both take the magic constant out of the equation)! (Or, more accurately, these are safe if 
all bits that could be 0 in A are 0 in the immediate value.)

Test code: 
• general: CPU/asap/cpu_anx.prg, Lorenz-2.15/lxab.prg
• temperature dependency: general/ane-lax/ane-lax.prg
• dependency on RDY line: CPU/lax/lax.prg, CPU/lax/lax-

border.prg, CPU/lax/lax-none.prg

Simulation Links:
• read magic constant: 

http://visual6502.org/JSSim/expert.html?graphics=f&a=0&steps=13&d=a200a900abffea
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Example:

LAX #{IMM} ;AB {IMM}

Equivalent Instructions:

ORA #{CONST}

AND #{IMM}

TAX

http://visual6502.org/JSSim/expert.html?graphics=f&a=0&steps=13&d=a200a900abffea


The problem with LAX immediate is that its decode is a combination of LDA, LDX, and
TAX.  This causes the current contents of the accumulator to be merged in with the value
loaded from the data bus.  Normally, during an LDA or LDX instruction, it doesn't matter if
the  operand-input  bus  is  stable  during  the  whole  half-cycle  for  which  they're  enabled.
Nothing is reading from the registers while they are being loaded; as long as the bus has
stabilized before the load-enable signal goes away, the registers will end up with the correct
value.  The LAX opcode, however, enables the 'output accumulator' signal as well as the
'feed output bus to input bus' signal.  My 6507 documentation doesn't show which buses
have 'true'  or  'inverted'  logic  levels,  but  a  natural  implementation  would likely  use the
opposite signal polarity for the output bus and input bus (so the connections between them
would be inverting buffers).  Under that scenario, LAX would represent a race condition to
see which bus got a 'low' signal first.  A variety of factors could influence 'who wins' such a
race.'

A surprising discovery

Despite the instability mentioned before, it was discovered that a very popular C-64 game – Wizball
- actually uses the  LAX #imm opcode in a way that is considered unstable (actually in the most
unstable way possible). The location in Wizball where LAX #imm is executed is at $b58b (this is
in the “get ready” screen):

b589  A9 00     LDA #$00 

b58b  AB FF     LXA #$FF    ; A = X = (($00 | CONST) & $ff) = $EE

b58d  DF 97 FF  DCP $FF97,X ; decrement mem (=$85), compare with

                            ; akku (=$EE)

b590  60        RTS

$85 is used as a delay(?) counter at various places in the game, and $EE really seems to be the one
and only value to make it work correctly. This implies that we might actually be able to rely on
this - at least no horror stories from the 80s about Wizball not working (randomly) are known to
exist.

Emulation

Due to the above, emulators are advised to use $EE for the “magic constant” in both normal and
RDY cycles. This  will break at least one other program that is known to use  LAX #imm – the
“Blackmail FLI” mentioned in the appendix – however, that program was known to be flaky even
back in the days, and the use of LAX #imm might very well be the reason for that.
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Example: clear A and X

Example: load A and X with same value

Example: read the 'magic constant'

- 60 -

; assuming A=$ff from previous operation 

LAX #<value> ; AB <value>

is equivalent to:

LDA #<value>

TAX

… and is safe to use, as a value of  $FF in accumulator takes the 'magic constant' out of the
equation.

To determine the 'magic constant' which is in effect on your particular machine, you can do this:

LDA #0

LAX #$ff ; A,X contain the magic constant

This is mostly useful for experimenting and proving the constant is actually different on different
set-ups.  Do not rely on this value!  It may not be stable even on the same chip and depend on
temperature and/or the supplied voltage.

LAX #0 ; AB 00

is equivalent to:

LDA #0

TAX

… and is safe to use, as using 0 as the immediate value takes the 'magic constant' out of the
equation.



Unintended addressing modes

Absolute Y Indexed (R-M-W)

• 3 bytes, 7 cycles

db lo hi   DCP abs, y
fb lo hi   ISC abs, y
7b lo hi   RRA abs, y
3b lo hi   RLA abs, y
1b lo hi   SLO abs, y
5b lo hi   SRE abs, y

Cycle Address-Bus Data-Bus Read/Write

1 PC   Opcode fetch R

2 PC + 1 Absolute Address Low R

3 PC + 2 Absolute Address High R

4 < AAH, AAL + Y > Byte at target address before high byte was corrected R

5 AA + Y Old Data R

6 AA + Y Old Data W

7 AA + Y New Data W

Simulation Link: http://visual6502.org/JSSim/expert.html?
graphics=f&a=0&steps=22&d=a0d0db10eaeaeaeaeaeaeaeaeaeaeaea1280

equivalent legal mode: Absolute X Indexed (R-M-W)
• 3 bytes, 7 cycles

ASL abs, x  DEC abs, x  INC abs, x  LSR abs, x  ROL abs, x  ROR abs, x

df lo hi   DCP abs, x
ff lo hi   ISC abs, x
7f lo hi   RRA abs, x
3f lo hi   RLA abs, x
1f lo hi   SLO abs, x
5f lo hi   SRE abs, x

Cycle Address-Bus Data-Bus Read/Write

1 PC   Opcode fetch R

2 PC + 1 Absolute Address Low R

3 PC + 2 Absolute Address High R

4 < AAH, AAL + X > Byte at target address before high byte was corrected R

5 AA + X Old Data R

6 AA + X Old Data W

7 AA + X New Data W
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Zeropage X Indexed Indirect (R-M-W)

• 2 bytes, 8 cycles

C3 zp   DCP (zp, x)
E3 zp   ISC (zp, x)
23 zp   RLA (zp, x)
63 zp   RRA (zp, x)
03 zp   SLO (zp, x)
43 zp   SRE (zp, x)

Cycle Address-Bus Data-Bus Read/Write

1 PC   Opcode fetch R

2 PC + 1 Direct Offset R

3 DO Byte at direct offset R

4 DO + X Absolute Address Low R

5 DO + X + 1 Absolute Address High R

6 AA Old Data R

7 AA Old Data W

8 AA New Data W

Simulation Link: http://visual6502.org/JSSim/expert.html?
graphics=f&a=0&steps=22&d=a2d0c310eaeaeaeaeaeaeaeaeaeaeaea1280

related legal mode: Zeropage X Indexed Indirect

• 2 bytes, 6 cycles

ADC (zp, x)  AND (zp, x)  CMP (zp, x)  EOR (zp, x)  LDA (zp, x)  ORA (zp, x)  SBC (zp, x) 
STA (zp, x)

a3 zp   LAX (zp, x)
83 zp   SAX (zp, x)

Cycle Address-Bus Data-Bus Read/Write

1 PC   Opcode fetch R

2 PC + 1 Direct Offset R

3 PC + 1 Byte at direct offset R

4 DO + X Absolute Address Low R

5 DO + X + 1 Absolute Address High R

6 AA Data Low R/W
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Zeropage Indirect Y Indexed (R-M-W)

• 2 bytes, 8 cycles

D3 zp   DCP (zp), y
F3 zp   ISC (zp), y
33 zp   RLA (zp), y
73 zp   RRA (zp), y
13 zp   SLO (zp), y
53 zp   SRE (zp), y

Cycle Address-Bus Data-Bus Read/Write

1 PC   Opcode fetch R

2 PC + 1 Direct Offset R

3 DO Absolute Address Low R

4 DO + 1 Absolute Address High R

5 < AAH, AAL + Y > Byte at target address before high byte was corrected R

6 AA + Y Old Data R

7 AA + Y Old Data W

8 AA + Y New Data W

Simulation Link: http://visual6502.org/JSSim/expert.html?
graphics=f&a=0&steps=22&d=a0d0d310eaeaeaeaeaeaeaeaeaeaeaea1280

related legal mode: Zeropage Indirect Y Indexed

• 2 bytes, 5+1 cycles

ADC (zp), y  AND (zp), y  CMP (zp), y  EOR (zp), y  LDA (zp), y  ORA (zp), y  SBC (zp), y  
STA (zp), y

b3 zp   LAX (zp), y 
93 zp   SHA (zp), y

Cycle Address-Bus Data-Bus Read/Write

1 PC   Opcode fetch R

2 PC + 1 Direct Offset R

3 DO Absolute Address Low R

4 DO + 1 Absolute Address High R

+1 (*) < AAH, AAL + Y > Byte at target address before high byte was corrected R

5 AA Data R/W

(*) Add 1 cycle for indexing across page boundaries, or when writing to memory.
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Unintended decimal mode

The  decimal  mode  (or  “BCD  mode”)  of  the  6502  family  is  an  often  ignored  artefact  of  the
instruction  set.  Since  it  turned  out  not  to  be  very  useful  in  many  practical  situations,  many
programmers never use it, which contributes to the state of it being ignored :)

The decimal mode is described here because

• The  behaviour  of  operations  on  invalid  BCD  values  is  officially  undocumented.  The
following exactly describes the behaviour for all values, valid BCD or not, by giving exact
pseudocode for each instruction.

• Some undocumented instructions inherit dependency on decimal mode from ADC or SBC.
The main part of this document refers to binary mode, the following exactly describes how
these instructions work in decimal mode.

• Last not least because decimal mode is ignored by so many programmers

Like the rest of the document, the following applies specifically to the 6510 MOS chips. 65C02 or
65816 as well  as other derivates behave totally different when it  comes to details  such as flag
behaviour and invalid BCD values.

Test code: CPU/Acid800/cpu_decimal.prg CPU/bclark/decimalmode.prg 
CPU/asap/cpu_decimal.prg CPU/64doc/dsbc-cmp-flags.prg 
CPU/64doc/dsbc.prg CPU/64doc/dadc.prg
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Decimal mode in a nutshell

The decimal mode is meant to aid in making calculations with BCD encoded values (“packaged”
BCD, one digit per nibble). A BCD encoded value is a hex number with both its upper and lower
nibble equal to 0-9. All other values are invalid BCD values.

When the D flag is set, only (!) the ADC and SBC instructions (and undocumented instructions
derived from them) will work differently than in binary mode.

1. The ALU works differently than in binary mode:

The low and high nibble of the Akku will be treated as a BCD value, and when performing
operations on it intermediate values will be BCD fixed and carry will be generated on BCD
overflows.

When decimal-correcting a nibble for addition, following rules apply:

if ((nibble > 0x9) | (C’ == 1)) { nibble += 6 }

if ((nibble > 0xF) { C’’ = 1 } else { C’’ = C’ }

When decimal-correcting a nibble for subtraction,  following rules apply:

if (C’ == 0) { nibble -= 6 }

if (nibble < 6) { C’’ = 1 } else { C’’ = C’ }

Thus,  $F + $F in decimal  mode is  $14, not $24. Also,  decimal correction can result  in
nibbles ranging from $A-$F. For example, $C + $D results in $19 before correction, $1F
after.

The Processor Flags work differently than in binary mode:

• C will work as a carry for multi-byte operations as expected (for valid BCD values, for other
values see the rules above)

• N and V are set after the high-order nibble is added or subtracted but before it is decimal-
corrected, according to binary rules (see the respective instruction below).

◦ N will be equal to bit 7 of some intermediate result

◦ V will use the same logic as in binary mode, but some intermediate results will be used

• Z is always set according to binary mode. So it will be set when the non-BCD operation,
before the BCD fixup, would have resulted in $00 - no matter what value the result of the
BCD operation is.
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example:

SED
CLC
LDA #$80
ADC #$80
; A = $60, C = 1, Z = 1

invalid BCD

Since only nibble values from 0 to 9 are valid in BCD, it's interesting to see what happens when
using A to F. For example:

$00+$1F=$25 ("ok" since 10 + $0F = 25)
$10+$1F=$35 ("ok")
$05+$1F=$2A (a non-BCD result, "ok" since 5 + 10 + $0F = 20 + $0A)
$0F+$0A=$1F ("ok", since $0F + $0A = $0F + 10)
$0F+$0B=$10 (?!)

… refer to the pseudocode below for details
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affected instructions

Surprisingly, only two instructions actually depend on the decimal mode flag: ADC and SBC.

However, all undocumented instructions derived from them are also affected: ARR, RRA, ISC (and
the undocumented $EB SBC).

Test code: CPU/decimalmode/scanner.prg

ADC

Opc. Mnemonic Function Size Cycles N V - B D I Z C

$79 ADC abs, y A = A + {addr} 3 4 (+1) o o i o x

$7d ADC abs, x 3 4 (+1) o o i o x

$6d ADC abs 3 4 o o i o x

$71 ADC (zp),y 2 5 (+1) o o i o x

$61 ADC (zp, x) 2 6 o o i o x

$75 ADC zp, x 2 4 o o i o x

$65 ADC zp 2 3 o o i o x

$69 ADC #imm A = A + #{imm} 2 2 o o i o x

Operation: add immediate value from accumulator with carry.

Flags

• The N and V flags are set after fixing the lower nibble but before fixing the upper one. They 
use the same logic as binary mode ADC.

• Z flag is not affected by decimal mode, it will be set if the binary operation would become 
zero, regardless of the BCD result.

• C flag works as a carry for multi byte operations as expected

Test code: CPU/decimalmode/adc00.prg CPU/decimalmode/adc01.prg 
CPU/decimalmode/adc02.prg CPU/decimalmode/adc10.prg 
CPU/decimalmode/adc11.prg CPU/decimalmode/adc12.prg
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pseudocode

    /* A = value in Akku, imm = immediate argument, C = carry */

    /* Calculate the lower nibble. */
    tmp = (A & 0x0f) + (imm & 0x0f) + C;

    /* BCD fixup for lower nibble. */
    if (tmp > 9) { tmp += 6; }
    if (tmp <= 15) {
        tmp = (tmp & 0x0f) + (A & 0xf0) + (imm & 0xf0);
    }else{
        tmp = (tmp & 0x0f) + (A & 0xf0) + (imm & 0xf0) + 0x10;
    }

    /* Zero flag is set just  like in Binary mode. */
    Z = ((A + imm + C) & 0xff) ? 0 : 1;

    /* Negative and Overflow flags are set with the same logic than in
       Binary mode, but after fixing the lower nibble. */
    N = (tmp & 0x80) >> 7;
    V = ((A ^ tmp) & 0x80) && !((A ^ imm) & 0x80);

    /* BCD fixup for higher nibble. */
    if ((tmp & 0x1f0) > 0x90) {
        tmp += 0x60;
    }

    /* Carry is the only flag set after fixing the result. */
    C = (tmp & 0xff0) > 0xf0;

    A = tmp;
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Example: convert a hex digit to ASCII

SED
CMP #$0A
ADC #$30
CLD

This code converts a hex digit 0 to F (i.e. the accumulator $00 to $0F) to $30 to $39 (for 0 to 9) and
$41 to $46 (for A to F). However, this can also be done without using BCD arithmetic, as follows: 

     CMP #$0A
     BCC SKIP
     ADC #$66 ; Add $67 (the carry is set), convert $0A to $0F --> $71 to $76
SKIP EOR #$30 ; Convert $00 to $09, $71 to $76 --> $30 to $39, $41 to $46

Which takes 2 more bytes, but the same number of cycles (or one less if the BCC is taken to the
same page).

Example: convert a hex digit to BCD

; A contains 0-f (hex)
SED
CLC
ADC #$00
CLD
; A contains 0-15 (BCD)

Example: Distinguish NMOS 6502 from CMOS 65C02

SED
CLC
LDA #$99
ADC #$01
CLD

This code returns with the Z flag set on a 65C02 (the Z flag is valid), and returns with the Z flag
clear  on  a  6502  (the  Z  flag  is  invalid,  and  in  this  case  it  does  not  match  the  result  in  the
accumulator).
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SBC (USBC)

Type:  Combination of an immediate and an implied command (Sub-instructions: SBC, NOP)

Opc. Mnemonic Function Size Cycles N V - B D I Z C

$f9 SBC addr, y A = A - {addr} 3 4 (+1) o o i o x

$fd SBC addr, x 3 4 (+1) o o i o x

$ed SBC addr 3 4 o o i o x

$f1 SBC (zp), y 2 5 (+1) o o i o x

$e1 SBC (zp, x) 2 6 o o i o x

$f5 SBC zp, x 2 4 o o i o x

$e5 SBC zp 2 3 o o i o x

$E9 SBC #imm A = A - #{imm} 2 2 o o i o x

$EB SBC #imm 2 2 o o i o x

Operation: subtract immediate value from accumulator with carry.

The only difference in SBC's operation in decimal mode from binary mode is the result-fixup.

Decimal subtraction is easier than decimal addition, as you have to make the BCD fixup only when
a nibble overflows. In decimal addition, you had to verify if the nibble was greater than 9. The
processor has an internal "half carry" flag for the lower nibble, used to trigger the BCD fixup. When
calculating with legal BCD values, the lower nibble cannot overflow again when fixing it.

So, the processor does not handle overflows while performing the fixup. Similarly, the BCD fixup
occurs in the high nibble only if the value overflows, i.e. when the C flag will be cleared.

In binary mode, subtraction has a wraparound effect. For example $00 - $01 = $FF (and the carry is
clear). In decimal mode, there is a similar wraparound effect: $00 - $01 = $99, and the carry is clear.

Flags

• The N and V flags are not affected by decimal mode.

• Z flag is not affected by decimal mode, it will be set if the binary operation would become 
zero, regardless of the BCD result.

• C flag works as a carry for multi byte operations as expected

Test code: CPU/decimalmode/sbc00.prg CPU/decimalmode/sbc01.prg 
CPU/decimalmode/sbc02.prg CPU/decimalmode/sbc10.prg 
CPU/decimalmode/sbc11.prg CPU/decimalmode/sbc12.prg 
CPU/decimalmode/sbcEB00.prg CPU/decimalmode/sbcEB01.prg 
CPU/decimalmode/sbcEB02.prg CPU/decimalmode/sbcEB10.prg 
CPU/decimalmode/sbcEB11.prg CPU/decimalmode/sbcEB12.prg
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pseudocode

    /* A = value in Akku, imm = immediate argument, C = carry */

    /* set flags like in a binary subtraction */
    tmp = A - imm - (C ^ 1);
    C = (tmp < 0x100) ? 1 : 0;
    N = (tmp & 0x80) >> 7;
    Z = ((tmp & 0xff) == 0) ? 1 : 0;
    V = (((A ^ tmp) & 0x80) && ((A ^ imm) & 0x80));

    /* Calculate the lower nibble. */
    tmp2 = (A & 0x0f) - (imm & 0x0f) - (C ^ 1);
    /* BCD correction */ 
    if (tmp2 & 0x10) {
        tmp2 = ((tmp2 - 6) & 0xf) | ((A & 0xf0) - (imm & 0xf0) - 0x10);
    } else {
        tmp2 = (tmp2 & 0xf) | ((A & 0xf0) - (imm & 0xf0));
    }
    if (tmp2 & 0x100) {
        tmp2 -= 0x60;
    }

    A = tmp2;
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ARR

Type:  Combination of an immediate and an implied command (Sub-instructions: AND, ROR)

Opc. Mnemonic Function Size Cycles N V - B D I Z C

$6B ARR #imm A = (A & #{imm}) / 2 2 2 o o i o o

note to ARR: part of this command are some ADC mechanisms. 

Operation: In Decimal mode the ARR instruction first performs the AND and ROR, just like in
Binary mode. The N flag will be copied from the initial C flag, and the Z flag will be set according
to the ROR result, as expected. The V flag will be set if the bit 6 of the accumulator changed its
state between the AND and the ROR, cleared otherwise.

If the low nibble of the AND result, incremented by its lowmost bit, is greater than 5, the low nibble
in the ROR result will be incremented by 6. The low nibble may overflow as a consequence of this
BCD fixup, but the high nibble won't be adjusted. The high nibble will be BCD fixed in a similar
way. If the high nibble of the AND result, incremented by its lowmost bit, is greater than 5, the high
nibble in the ROR result will be incremented by 6, and the Carry flag will be set. Otherwise the C
flag will be cleared.

pseudocode

    /* A = value in Akku, imm = immediate argument, C = carry */

    tmp = A & imm;  /* perform the AND */

    /* perform ROR */
    tmp2 = tmp | (C << 8);
    tmp2 >>= 1;

    N = C; /* original carry state is preserved in N */
    Z = (tmp2 == 0 ? 1 : 0); /* Z is set when the ROR produced a zero result */
    /* V is set when bit 6 of the result was changed by the ROR */
    V = ((tmp2 ^ tmp) & 0x40) >> 6;

    /* fixup for low nibble */
    if (((tmp & 0xf) + (tmp & 0x1)) > 0x5) {
        tmp2 = (tmp2 & 0xf0) | ((tmp2 + 0x6) & 0xf);
    }
    /* fixup for high nibble, set carry */
    if (((tmp & 0xf0) + (tmp & 0x10)) > 0x50) {
        tmp2 = (tmp2 & 0x0f) | ((tmp2 + 0x60) & 0xf0);
        C = 1;
    } else {
        C = 0;
    }

    A = tmp2;

Test code: CPU/decimalmode/arr00.prg CPU/decimalmode/arr01.prg 
CPU/decimalmode/arr02.prg CPU/decimalmode/arr10.prg 
CPU/decimalmode/arr11.prg CPU/decimalmode/arr12.prg
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ISC (ISB, INS)

Type: Combination of two operations with the same addressing mode (Sub-instructions: INC, SBC)

Opc. Mnemonic Function Size Cycles N V - B D I Z C

$E7 ISC zp {addr} = {addr} + 1   A = A - {addr} 2 5 o o i  o x

$F7 ISC zp, x 2 6 o o i  o x

$E3 ISC (zp, x) 2 8 o o i  o x

$F3 ISC (zp), y 2 8 o o i  o x

$EF ISC abs 3 6 o o i  o x

$FF ISC abs, x 3 7 o o i  o x

$FB ISC abs, y 3 7 o o i  o x

Operation: Increase memory by one, then subtract memory from accumulator (with borrow). 

This instruction works exactly like INC followed by SBC, with SBC inheriting the decimal mode as
described above.

Test code: CPU/decimalmode/isc00.prg CPU/decimalmode/isc01.prg 
CPU/decimalmode/isc02.prg CPU/decimalmode/isc03.prg 
CPU/decimalmode/isc10.prg CPU/decimalmode/isc11.prg 
CPU/decimalmode/isc12.prg CPU/decimalmode/isc13.prg 
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RRA (RRD)

Type:  Combination  of  two operations  with the  same addressing  mode (Sub-instructions:  ROR,
ADC)

Opc. Mnemonic Function Size Cycles N V - B D I Z C

$67 RRA zp {addr} = ror {addr}   A = A adc {addr} 2 5 o o i o x

$77 RRA zp, x 2 6 o o i o x

$63 RRA (zp, x) 2 8 o o i o x

$73 RRA (zp), y 2 8 o o i o x

$6F RRA abs 3 6 o o i o x

$7F RRA abs, x 3 7 o o i o x

$7B RRA abs, y 3 7 o o i o x

Operation: Rotate one bit right in memory, then add memory to accumulator (with carry).

This instruction works exactly like ROR followed by ADC, with ADC inheriting the decimal mode 
as described above.

Test code: CPU/decimalmode/rra00.prg CPU/decimalmode/rra01.prg 
CPU/decimalmode/rra02.prg CPU/decimalmode/rra03.prg 
CPU/decimalmode/rra10.prg CPU/decimalmode/rra11.prg 
CPU/decimalmode/rra12.prg CPU/decimalmode/rra13.prg 
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Unintended memory accesses
Due to how the 6502 works internally, every execution cycle is always a memory access – either
read  or  write.  In  some  cases  those  accesses  are  “dummies”  and  are  not  related  to  what  the
instruction is actually supposed to do. Usually these accesses can be ignored, however they can also
be  (ab)used  and  sometimes  they  may  cause  unwanted  side  effects,  eg  when  dealing  with  I/O
registers.

Dummy fetches

Single byte instructions

Single  byte  instructions  will  always  fetch  the  PC+1  after  the  opcode  fetch  (like  any  other
instruction).

Akkumulator
ASL  LSR  ROL  ROR

Cycle Address-Bus Data-Bus Read/Write

1 PC   Opcode fetch R

2 (*) PC + 1 Byte after opcode R

(*) fetch after opcode

Implied
CLC  CLD  CLI  CLV  DEX  DEY  INX  INY  NOP  SEC  SED  SEI  TAX  TAY  TSX  TXA  TYA  TXS

Cycle Address-Bus Data-Bus Read/Write

1 PC   Opcode fetch R

2 (*) PC + 1 Byte after opcode R

(*) fetch after opcode

Stack (push)
PHA  PHP

Cycle Address-Bus Data-Bus Read/Write

1 PC   Opcode fetch R

2 (*) PC + 1 Byte after opcode R

3 S - 1 Register Low W

(*) fetch after opcode
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Stack (software interrupts)
BRK

Cycle Address-Bus Data-Bus Read/Write

1 PC   Opcode fetch R

2 (*) PC + 1 Byte after opcode (“Signature”) R

3 S – 0 Program counter High W

4 S - 1 Program counter low W

5 S - 2 Status register W

6 VA IRQ vector address low (= $fffe) R

7 VA + 1 IRQ vector address high (= $ffff) R

(*) fetch after opcode

Stack (RTI)
RTI

Cycle Address-Bus Data-Bus Read/Write

1 PC   Opcode fetch R

2 (*) PC + 1 Byte after opcode R

3 S – 0 Program counter High W

4 S - 1 Program counter low W

5 S - 2 Status register W

6 VA IRQ vector address low (= $fffe) R

7 VA + 1 IRQ vector address high (= $ffff) R

(*) fetch after opcode

Example: acknowledge CIA interrupts

JMP $DD0C
;DD0C    RTI

This will execute the RTI instruction at $DD0C, but since it will also fetch the next “opcode” it will
also perform a read on $DD0D, which will acknowledge the NMI. This is one cycle faster than
doing

LDA $DD0D
RTI
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Hardware interrupts

A special case are the hardware interrupts (IRQ, NMI, RESET).

Cycle Address-Bus Data-Bus Read/Write

1 (*1) PC Byte at PC R

2 (*2) S – 0 Program counter High W

3 (*2) S - 1 Program counter low W

4 (*2) S - 2 Status register W

5 VA vector address low R

6 VA + 1 vector address high R

(*1) Dummy fetch from PC

(*2) R/W remains high during reset, ie reset does not write to the stack

Indexed instructions

Indexed  instructions  read  from the  target  address  before  the  highbyte  was  incremented,  if  the
indexing causes a page boundary crossing.

Absolute indexed
ADC abs, x  AND abs, x  CMP abs, x  EOR abs, x  LDA abs, x  LDY abs, x  NOP abs, x  ORA abs, x  
SBC abs, x  SHY abs, x  STA abs, x

ADC abs, y  AND abs, y  CMP abs, y  EOR abs, y  LAS abs, y  LAX abs, y  LDA abs, y  LDX abs, y  
ORA abs, y  SBC abs, y  SHA abs, y  TAS abs, y  SHX abs, y  STA abs, y

Cycle Address-Bus Data-Bus Read/Write

1 PC   Opcode fetch R

2 PC + 1 Absolute Address Low R

3 DO + 1 Absolute Address High R

3a (*) < AAH, AAL + IL > Byte at target address before high byte was corrected R

4 AA Data R/W

(*) Add one cycle for indexing across page boundaries or write. A dummy read happens to the target
address before the high byte was corrected.
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Example: acknowledge both CIA interrupts

This will do a dummy read at $DC0D and a normal read at $DD0D, this way you can acknowledge
both CIA interrupts in one instruction:

LDX #$F0

LDA $DC1D, X

… and is one cycle faster, and one byte shorter, than doing

LDA $DC0D

LDA $DD0D

Example: 5 cycle wide rastersplits

If you want to have raster splits that are exactly 5 cycles wide, you can use:

LDX #$FF
LDY #$05
LDA #$00
STY $D021
STA $CF22, X

Example: Sprites far right in the border

To feed data to the sprite pattern pipe for a sprite that is displayed “far right” so it did not yet have
its DMA cycles before you can use a

STA VIC_REG, X

at the correct position in the rasterline, s.t. the 4th cycle occurs at the first sprite DMA-cycle and the
5th (the W-cycle) at the 2nd sprite DMA-cycle. This way the sprite pattern byte is filled with:

1. byte read in 4th cycle from the (uncorrected!) VIC-address
2. ghostbyte
3. byte stored in 5th cycle

Testcode:

• VICII/sb_sprite_fetch/sbsprf24.prg
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Zeropage Indirect Y Indexed

ADC (zp), y  AND (zp), y  CMP (zp), y  EOR (zp), y  LDA (zp), y  ORA (zp), y  SBC (zp), y  
STA (zp), y  LAX (zp), y

Cycle Address-Bus Data-Bus Read/Write

1 PC   Opcode fetch R

2 PC + 1 Direct Offset R

3 DO Absolute Address Low R

4 DO + 1 Absolute Address High R

4a (*) < AAH, AAL + Y > Byte at target address before high byte was corrected R

5 AA Data R/W

(*) Add 1 cycle for indexing across page boundaries, or write. Dummy read from target address
before the high byte is incremented.

ZP indexed instructions

ZP indexed instructions read from the target address before the index was added

Zeropage indexed
ADC zp, x  AND zp, x  CMP zp, x  EOR zp, x  LDA zp, x  LDY zp, x  ORA zp, x  SBC zp, x  STA zp, x  
STY zp, x

LAX zp, y  LDX zp, y  SAX zp, y  STX zp, y

Cycle Address-Bus Data-Bus Read/Write

1 PC   Opcode fetch R

2 PC + 1 Direct Offset R

3 (*) DO Byte at direct offset R

4 AA Data R/W

(*) Dummy fetch from direct offset, before the index was added
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Zeropage X Indexed Indirect
ADC (zp, x)  AND (zp, x)  CMP (zp, x)  EOR (zp, x)  LDA (zp, x)  ORA (zp, x)  SBC (zp, x) 
STA (zp, x)  LAX (zp, x)  SAX (zp, x)

Cycle Address-Bus Data-Bus Read/Write

1 PC   Opcode fetch R

2 PC + 1 Direct Offset R

3 (*) PC + 1 Byte at direct offset R

4 DO + X Absolute Address Low R

5 DO + X + 1 Absolute Address High R

6 AA Data R/W

(*) Dummy fetch from direct offset

Stack

Some instructions that use the stack do dummy fetches from the stack.

Absolute (JSR)

Cycle Address-Bus Data-Bus Read/Write

1 PC   Opcode fetch R

2 PC + 1 New PC low R

3 (*) S Byte from stack R

4 S PC high W

5 S - 1 PC low W

6 PC + 2 New PC high R

(*) Dummy fetch from stack
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Stack (RTS)

Cycle Address-Bus Data-Bus Read/Write

1 PC   Opcode fetch R

2 (*1) PC + 1 Byte after opcode R

3 (*2) S Byte from stack R

4 S + 1 New PC low - 1 R

5 S + 2 New PC high R

6 (*3) New PC - 1 Byte at target address R

(*1) dummy fetch from PC + 1
(*2) dummy fetch from stack
(*3) dummy fetch from target address (New PC – 1)

Stack (Pull)
PLA  PLP

Cycle Address-Bus Data-Bus Read/Write

1 PC   Opcode fetch R

2 (*1) PC + 1 Byte after opcode R

3 (*2) S Byte from stack R

4 S + 1 Register value R

(*1) dummy fetch from PC + 1
(*2) dummy fetch from Stack

Branches

Branches read from various intermediate addresses

BCC  BCS  BNE  BEQ  BMI  BPL  BVC  BVS

Cycle Address-Bus Data-Bus Read/Write

1 PC   Opcode fetch R

2 PC + 1 Offset R

2a (*1) PC + 2 Byte at PC + 2 R

2b (*2) PC + 2 + Offset Byte at PC + 2 + Offset R

(*1) Add one cycle if branch is taken, dummy read from PC + 2
(*2) Add one cycle if branch is taken across page boundaries, dummy read from PC + 2 + Offset
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Dummy writes

Read-Modify-Write

Read-Modify-Write instructions will write back the unmodified value before writing the modified
value.

Absolute (R-M-W)
ASL abs  DCP abs  DEC abs  INC abs  ISC abs  LSR abs  RLA abs  ROL abs  ROR abs  RRA abs  SLO abs  
SRE abs

Cycle Address-Bus Data-Bus Read/Write

1 PC   Opcode fetch R

2 PC + 1 Absolute Address Low R

3 PC + 2 Absolute Address High R

4 AA Old Data R

5 (*1) AA Old Data W

6 AA New Data W

(*1) Unmodified original data is written back to memory

Example: acknowledge VIC-II interrupt

This is probably the most popular usage of the dummy writes. Usually you would have to do

LDA $D019

STA $D019

to acknowledge the VIC-II interrupt. However, you can use any RMW instruction instead, eg

INC $D019

Example: acknowledge and disable timer interrupt

DEC $DC0D 

after a Timer A IRQ occurred would acknowledge that IRQ and stop further ones.
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Example: write two values to I/O one cycle apart

The music routine from Fred Gray performs a read and write on IO with:

LDA #$40
STA $D404
INC $D404

Which will toggle the gate bit of the control register of the SID chip.

The same idea can be used to create “grey dots” spaced 8 pixels apart:

INC $D020

Example: ghostbyte under ROM

When reading a byte from ROM, the CPU reads from the ROM, but when writing to a byte in the
ROM, the write falls through to the RAM beneath it. So with an RMW instruction you can actually
write 2 values to a byte in RAM, 1 cycle apart, where none of the two written values are the value
that was already present. Usually not a useful thing to do, but together with the VIC we could
exploit this:

Put the VIC in bank 2 or 3 and enable the KERNAL/BASIC ROM. Then an INC (for example) can
write to the ghostbyte twice, 1 cycle apart - and the first write doesn't necessarily have to write what
was already there!

Unfortunately what you can write at the first dummy cycle is limited to what is in the ROM at the
chosen ghostbyte address (4 possibilities). What you can write at the 2nd write cycle also depends
on that value as well as which RMW-instruction you use (so we have 6 possibilities per ghostbyte
address for the second write-cycle).

Let's look at which possibilities of pixels we have:

ROM First Cycle Second Cycle

INC DEC ASL ROL LSR ROR

$B9FF = $A0 %10100000 %10100001 %10011111 %01000000 %0100000C %01010000 %C1010000

$BFFF = $E0 %11100000 %11100001 %11011111 %11000000 %1100000C %01110000 %C1110000

$F9FF = $D2 %11010010 %11010011 %11010001 %10100100 %1010010C %01101001 %C1101001

$FFFF = $FF %11111111 %00000000 (*) %11111110 %11111110 %1111111C %01111111 %C1111111

(*) this might be useful in practise to create a single cycle wide $00 → $FF → $00 pattern, just do
an INC $FFFF somewhere the ghostbyte is visible. (And init the ghostbyte to $00 in advance).
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Instead of the ghostbyte, the same could be done for charset/bitmaps (but not sprites or the screen),
for example (using precise timing) a charset-byte could could be set to $FF at the exact time it is
read by the VIC, using the dummy-write of an  INC, and then to  $00 immediately after, at the
second write-cycle, so that it is  $00 next time it is rendered by the VIC (instead of LDA #$FF,
STA $xxxx, LDA #$00, STA $xxxx).

When repeating the 7th pixel-line of a text-line using linecrunch, for example, this could make the
charset-byte $FF on one raster line and $00 on the next with only one INC $xxxx instruction.

That could of course be repeated again and again, every 2nd line, so that the charset-byte alternates
between $00 and $FF every rasterline.

Example: start a REU transfer

It is possible to start a REU transfer by writing to address $FF00, which is useful when you want to
transfer to or from memory in the $D000-$DFFF range. But sometimes you don't want to trash the
byte at $FF00, so you end up starting the transfer like this:

LDA $FF00
STA $FF00

However, it turns out you can use any RMW instruction:

INC $FF00

The dummy write causes the REU to immediately take over the bus, so the second write-request
from the CPU doesn't reach the memory chips. The incremented value never gets written into RAM
-  Three cycles saved.

Test code: 
• REU/rmw-trigger/rmwtrigger-ram.prg,  

REU/rmw-trigger/rmwtrigger-rom.prg

The 6502 has two inputs, /RDY (Ready) and /AEC (Address Enable Control). RDY tells the CPU to
pause execution, but it is only obeyed during read cycles. AEC immediately disconnects the CPU
from the buses (address, data, and the read/write signal).

The VIC chip has two outputs, BA (Bus Available) and AEC (Address Enable Control). During
normal operation, VIC asserts AEC (which is connected to AEC on the CPU) on every other half-
cycle in order to read e.g. font bits. It has to work immediately, i.e. asynchronously, because it
needs to be fast enough for half-cycle operations.

When VIC needs to halt the CPU, it first pulls BA low for three cycles, to ensure that the CPU is on
a read cycle. Then it asserts AEC in order to access memory on both half-cycles.

The expansion port has an output, BA, and an input, /DMA. BA comes from the VIC. But /DMA is
connected to both /RDY and /AEC. That is,  it  tells  the CPU to pause,  but  it  also immediately
disconnects the CPU from the buses.
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The REU monitors BA so it can pause an ongoing transfer during badlines and sprite fetches. But
otherwise, it pulls /DMA and just assumes that the bus is free. The engineers must have assumed
(wrongly) that the CPU will always trigger a transfer on the last cycle of an instruction, so that the
next cycle is guaranteed to be a read (to fetch the next instruction).

Instead, due to the double-write of our RMW instruction, part of the CPU will attempt to place an
address  and  data  value  on  the  buses,  and  set  the  read/write  line  to  write.  But  the  CPU  is
disconnected from the buses because /DMA is held low, and therefore /AEC. The bits never reach
the actual bus lines; they dissipate into a small amount of heat.

Zeropage (R-M-W)
ASL zp  DCP zp  DEC zp  INC zp  ISC zp  LSR zp  RLA zp  ROL zp  ROR zp  RRA zp  SLO zp  SRE zp

Cycle Address-Bus Data-Bus Read/Write

1 PC   Opcode fetch R

2 PC + 1 Absolute Address Low R

3 AA Old Data R

4 (*1) AA Old Data W

5 AA New Data W

(*1) Unmodified original data is written back to memory

Indexed Read-Modify-Write

Indexed Read-Modify-Write  instructions  will  do a dummy read and write  back the unmodified
value before writing the modified value.

Absolute X Indexed (R-M-W)
ASL abs, x  DEC abs, x  INC abs, x  LSR abs, x  ROL abs, x  ROR abs, x  DCP abs, x  ISC abs, x  
RRA abs, x  RLA abs, x  SLO abs, x  SRE abs, x

Cycle Address-Bus Data-Bus Read/Write

1 PC   Opcode fetch R

2 PC + 1 Absolute Address Low R

3 PC + 2 Absolute Address High R

4 (*1) < AAH, AAL + X > Byte at target address before high byte was corrected R

5 AA + X Old Data R

6 (*2) AA + X Old Data W

7 AA + X New Data W

(*1) Dummy fetch from target address before the high byte was incremented
(*2) Unmodified data is written back to the target address
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Absolute Y Indexed (R-M-W)
DCP abs, y  ISC abs, y  RRA abs, y  RLA abs, y  SLO abs, y  SRE abs, y

Cycle Address-Bus Data-Bus Read/Write

1 PC   Opcode fetch R

2 PC + 1 Absolute Address Low R

3 PC + 2 Absolute Address High R

4 (*1) < AAH, AAL + Y > Byte at target address before high byte was corrected R

5 AA + Y Old Data R

6 (*2) AA + Y Old Data W

7 AA + Y New Data W

Simulation Link: http://visual6502.org/JSSim/expert.html?
graphics=f&a=0&steps=22&d=a0d0db10eaeaeaeaeaeaeaeaeaeaeaea1280

(*1) Dummy fetch from target address before the high byte was incremented
(*2) Unmodified data is written back to the target address

Zeropage X indexed (R-M-W)
ASL zp, x  DCP zp, x  DEC zp, x  INC zp, x  ISC zp, x  LSR zp, x  RLA zp, x  ROL zp, x  ROR zp, x  
RRA zp, x  SLO zp, x  SRE zp, x

Cycle Address-Bus Data-Bus Read/Write

1 PC   Opcode fetch R

2 PC + 1 Direct offset R

3 (*1) DO Byte at direct offset before index was added R

4 DO + X Old Data R

5 (*2) DO + X Old Data W

6 DO + X New Data W

(*1) Dummy fetch from direct offset before the index was added
(*2) Unmodified data is written back to the target address
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Zeropage Indirect Y Indexed (R-M-W)
DCP (zp), y  ISC (zp), y  RLA (zp), y  RRA (zp), y  SLO (zp), y  SRE (zp), y

Cycle Address-Bus Data-Bus Read/Write

1 PC   Opcode fetch R

2 PC + 1 Direct Offset R

3 DO Absolute Address Low R

4 DO + 1 Absolute Address High R

5 (*1) < AAH, AAL + Y > Byte at target address before high byte was corrected R

6 AA + Y Old Data R

7 (*2) AA + Y Old Data W

8 AA + Y New Data W

Simulation Link: http://visual6502.org/JSSim/expert.html?
graphics=f&a=0&steps=22&d=a0d0d310eaeaeaeaeaeaeaeaeaeaeaea1280

(*1) Dummy read from target address before high byte is incremented

(*2) Unmodified data is written back to the target address

Zeropage X Indexed Indirect (R-M-W)
DCP (zp, x)  ISC (zp, x)  RLA (zp, x)  RRA (zp, x)  SLO (zp, x)  SRE (zp, x)

Cycle Address-Bus Data-Bus Read/Write

1 PC   Op Code Fetch R

2 PC + 1 Direct Offset R

3 (*1) DO Byte at direct offset R

4 DO + X Absolute Address Low R

5 DO + X + 1 Absolute Address High R

6 AA Old Data R

7 (*2) AA Old Data W

8 AA New Data W

Simulation Link: http://visual6502.org/JSSim/expert.html?
graphics=f&a=0&steps=22&d=a2d0c310eaeaeaeaeaeaeaeaeaeaeaea1280

(*1) Dummy read from direct offset before index was added

(*2) Unmodified data is written back to the target address
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Unintended bugs and quirks
This chapter covers the remaining rest of weird and/or possibly undocumented and unintended 
things left.

Zeropage addressing modes & page wraps

If you use an indexed-zeropage addressing mode, either direct or indirect, it is not able to leave the
zeropage on page-wraps. 

Examples:

    LDX #$01

    LDA $FF,X

will fetch from adress $0000 and not $0100.

    LDA ($FF),Y

    LDX #$00

    LDA ($FF,X)

    LDX #$FF

    LDA ($00,X)

will all fetch the low-byte from $00FF and the high-byte from $0000.

Indirect addressing mode & page wraps

If you use the indirect addressing mode, PCH will not be incremented on page wraps. Example:

    JMP ($C0FF)

will fetch the low-byte from $C0FF and the high-byte from $C000.
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Appendix

Opcode naming in different Assemblers
Opc imp imm zp zpx zpy izx izy abs abx aby ind rel KickAss Acme ca65 dasm 64tass

SLO $07 $17 $03 $13 $0F $1F $1B SLO SLO SLO SLO SLO

RLA $27 $37 $23 $33 $2F $3F $3B RLA RLA RLA RLA RLA

SRE $47 $57 $43 $53 $4F $5F $5B SRE SRE SRE SRE SRE

RRA $67 $77 $63 $73 $6F $7F $7B RRA RRA RRA RRA RRA

SAX $87 $97 $83 $8F SAX SAX SAX SAX SAX

LAX $A7 $B7 $A3 $B3 $AF $BF LAX LAX LAX LAX LAX

DCP $C7 $D7 $C3 $D3 $CF $DF $DB DCP DCP DCP DCP DCP, DCM

ISC $E7 $F7 $E3 $F3 $EF $FF $FB ISC ISC ISC ISB ISC, INS, ISB

ANC $0B ANC ANC ANC ANC ANC

ANC $2B ANC2

ALR $4B ALR ALR, ASR ALR ASR ALR, ASR

ARR $6B ARR ARR ARR ARR ARR

SBX $CB AXS SBX AXS SBX AXS, SBX

SBC $EB SBC2

SHA $93 $9F AHX SHA SHA SHA AHX, SHA

SHY $9C SHY SHY SHY SHY SHY

SHX $9E SHX SHX SHX SHX SHX

TAS $9B TAS TAS TAS SHS TAS, SHS

LAS $BB LAS LAS LAS LAS LAS, LAE, LDS

LAX $AB LAX LXA LAX LXA LAX, LXA

ANE $8B XAA ANE ANE ANE XAA, ANE

NOP $0C $1C NOP, TOP NOP NOP NOP

NOP $80 $04 $14 NOP, DOP NOP NOP NOP

NOP $1A

NOP $3A $82 $44 $34 $3C

NOP $5A $C2 $64 $54 $5C

NOP $7A $E2 $74 $7C

NOP $DA $89 $D4 $DC

NOP $FA $F4 $FC

JAM $02 $12 $22 $32 $42 $52 $62 $72 $92 $B2 $D2 $F2 JAM JAM JAM
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Combined Examples

negating a 16bit number

Another trick that makes use of the SBX command is the negation of a 16 bit number:

LAX #$00 ;should be safe, as #$00 is loaded

SBX #lo ;sets carry automatically for upcoming sbc

SBC #hi

; negated value is in A/X

One might also think of extending this trick to negate two 8 bit numbers (A, X) at a time.

a smart addition

 A second case in which to use SBX is in combination with LAX, for example when doing:

LDA $02

CLC

ADC #$08

TAX

that can be easily substituted by:

LAX $02 ;A = X = M [$02]

SBX #$f8 ;X = (A & X) - -8

So we saved 4 cycles here, as the state of the carry is of no interest for the subtract done by SBX,
which is one of its big advantages. Thus we could also fake an ADD or SUB with that command. The
and-operation is not needed here, but does not harm. If there's use for it, just let A or X be loaded
with the right value for the and-mask.
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Multiply 8bit * 2 ^ n with 16bit result

If you want to set up a reference into a table of 8-byte objects use:

LAX Index,y ; 4 A,X = (index+Y)

AND #%00000111 ; 2

STA AddressHi ; 3 store A & %00000111

LDA #%11111000 ; 2

SAX AddressLo ; 3 store X & %11111000

; = 14 cycles

Which is a hell of a lot faster than multiplying by 8, and just means storing the values in the index
in a funny bit order (43210765) 
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6 sprites over FLI

The '6 sprites over FLI' routine used in 'Darwin' is based on the following code. It uses unintended
Read-Modify-Write  opcodes  since  they  have  a  side-effect  on  the  accumulator.  This  is  needed
because there is no time to load it explicitly with  LDA #.  'Finding this combination with usable
side-effects took 6 months (duration, not effort) and the game to find a second solution has been
rightfully named FLI-Sudoku :)'

First column in the comments show cycles, second the actual value written, and third the effective
bits.

; A=$A0 X=$36 Y=$21

; $d018=$1f $dd00=$3d $dd02=$36

STA $D011 ;4 A0 (20)

SRE $DD02 ;6 1b (03) A:A0 -> BB

STY $D011 ;4 21 (21)

ASL $D018 ;6 3f (38)

SAX $D011 ;4 32 (22)

STY $DD02 ;4 21 (01)

STA $D011 ;4 BB (23)

SRE $D018 ;6 1f (18) A:BB -> A4

STA $D011 ;4 A4 (24)

RRA $DD02 ;6 90 (00) A:A4 -> 35

STA $D011 ;4 35 (25)

SLO $D018 ;6 3f (38) A:35 -> 3F

STX $D011 ;4 36 (26)

STX $DD02 ;4 36 (02)

STA $D011 ;4 3F (27)

SRE $D018 ;6 1f (18) A:3F -> 20
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This block is repeated for every 8 lines of the graphics area, with every second block using $20 as a
start value for the accumulator like this:

; A=$20 $d018=$1f $dd02=$36

STA $D011 ;4 20 (20)

SRE $DD02 ;6 1b (03) A:20 -> 3B

STY $D011 ;4 21 (21)

ASL $D018 ;6 3f (38)

SAX $D011 ;4 32 (22)

STY $DD02 ;4 21 (01)

STA $D011 ;4 3B (23)

SRE $D018 ;6 1f (18) A:3B -> 24

STA $D011 ;4 24 (24)

RRA $DD02 ;6 90 (00) A:24 -> B5

STA $D011 ;4 B5 (25)

SLO $D018 ;6 3f (38) A:B5 -> BF

STX $D011 ;4 36 (26)

STX $DD02 ;4 36 (02)

STA $D011 ;4 BF (27)

SRE $D018 ;6 1f (18) A:BF -> A0

; A=$A0 $d018=$1f $dd02=$36
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Blackmail FLI

In 1989 ASP of Blackmail  released “FLI Graph v2.2”,  which for the first  time included a FLI
display routine exploiting that in the first 3 columns of a FLI picture the VICII would fetch the
colour-ram colour from “open” bus, with the result that whatever opcode comes after the write to
$D011 in the FLI displayer will define said colour.

The following shows the extracted code snippets used for creating the various colours in the first 3
columns, including a small fix that makes it possible to use all 16 colours.

First let’s outline what this display routine needs to do:

• for each line use 23 cycles (each line is a badline)

• in each line change the vram base address (via $D018)

• in each line force a badline (via $D011) at the same cycle within the line

• in each line alter the colour ram colour in the first 3 column by placing a specific opcode 
right after the store to $D011

• in each line change the background colour ($D021)

The first half of code for each line is always the same, first the X register is preloaded with the
value  that  will  be  stored  to  $D011.  The  same value  will  also  be  used  for  indirect-x  indexed
addressing in some variants of the second half of the code. After that the Akku is loaded with the
value used for $D018, then $D018 is written, and finally $D011 is stored. These 4 opcodes take
13 cycles total:

(3) a6 xx     ldx zp          ; $69/$6b/$6d/$6f/$71/$73/$75/$77

                              ; → loaded value is $b8,$b9..$bf

(2) a9 xx     lda # <screen>  ; original code uses $08..$78 here.

                              ; however if we use $0f-$7f instead,

                              ; the LAX#imm used in one variant

                              ; of the second half will always

                              ; work as intended, and for all 16

                              ; colours

(4) 8d 18 d0  sta $d018

(4) 8e 11 d0  stx $d011

After this follows a different part of code, depending on the colour that should be used for the
colour ram in the first 3 columns. This was achieved by using one of the opcodes in the $aX row of
the opcode matrix, which are all loads. The opcode used selects the colour fetched for the colour
ram, the value fetched by this opcode selects the colour stored to  $D021. This part of the code
alwas takes 10 cycles.
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0: black as colour ram colour

(2) a0 xx     ldy # <background colour>

(4) 8c 21 d0  sty $d021

(2) ea        nop

(2) ea        nop

1: white as colour ram colour

(6) a1 xx     lda (zp,x)        ; ((background colour << 1) + $59)

                                ; - ((line & 7) | $b8)

(4) 8d 21 d0  sta $d021

2: red as colour ram colour

(2) a2 xx     ldx # <background colour>

(4) 8e 21 d0  stx $d021

(2) ea        nop

(2) ea        nop

3: cyan as colour ram colour

(6) a3 xx     lax (zp,x)        ; ((background colour << 1) + $59)

                                ; - ((line & 7) | $b8)

(4) 8f 21 d0  sax $d021

4: violet as colour ram colour

(3) a4 xx     ldy zp            ; <(background colour << 1) + $59>

(4) 8c 21 d0  sty $d021

(3) 24 24     bit $24
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5: green as colour ram colour

(3) a5 xx     lda zp            ; <(background colour << 1) + $59>

(4) 8d 21 d0  sta $d021

(3) 24 24     bit $24

6: blue as colour ram colour

(3) a6 xx     ldx zp            ; <(background colour << 1) + $59>

(4) 8e 21 d0  stx $d021

(3) 24 24     bit $24

7: yellow as colour ram colour

(3) a7 xx     lax zp            ; <(background colour << 1) + $59>

(4) 8f 21 d0  sax $d021

(3) 24 24     bit $24

8: orange as colour ram colour

(2) a8        tay

(2) a0 xx     ldy # <background colour>

(4) 8c 21 d0  sty $d021

(2) ea        nop

9: brown as colour ram colour

(2) a9 xx     lda # <background colour>

(4) 8d 21 d0  sta $d021

(2) ea        nop

(2) ea        nop
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a: l.red as colour ram colour

(2) aa        tax

(2) a2 xx     ldx # <background colour>

(4) 8e 21 d0  stx $d021

(2) ea        nop

b: d.grey as colour ram colour

(2) ab xx     lax # <background colour> ; the original code uses

                                        ; A=$08,$18...$78 for the

                                        ; values written to $d011,

                                        ; which makes this rely on

                                        ; bit0-2 of the “magic

                                        ; constant” being set.

                                        ; However if we use A=$0f,

                                        ; $1f...$7f instead, that

                                        ; takes the constant out

                                        ; of the equation and this

                                        ; lax#imm will always work

                                        ; for all 16 colours.

(4) 8f 21 d0  sax $d021

(2) ea        nop

(2) ea        nop

c: m.grey as colour ram colour

(4) ac xx 03  ldy abs           ; $03b0 + <background colour>

(4) 8c 21 d0  sty $d021

(2) ea        nop
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d: l.green as colour ram colour

(4) ad xx 03  lda abs           ; $03b0 + <background colour>

(4) 8d 21 d0  sta $d021

(2) ea        nop

e: l.blue as colour ram colour

(4) ae xx 03  ldx abs           ; $03b0 + <background colour>

(4) 8e 21 d0  stx $d021

(2) ea        nop

f: l.grey as colour ram colour

(4) af xx 03  lax abs           ; $03b0 + <background colour>

(4) 8f 21 d0  sax $d021

(2) ea        nop

last not least, for the above code snippets to work, the following tables are used:

; values read by indirect x indexed loads

; values read by absolute loads ($03b0 + <background colour>)

03b0  b0 b1 b2 b3  b4 b5 b6 b7  b8 b9 ba bb  bc bd be bf

; addresses for indirect x indexed loads ($03b0...$03bf)

; every other value used for zp loads ($b0,$b1...$bf)

; second half also used as $d011 values ($b8, $b9...$bf)

0059  b0 03  b1 03 b2 03  b3 03 b4 03  b5 03 b6 03 b7 03

0069  b8 03  b9 03 ba 03  bb 03 bc 03  bd 03 be 03 bf 03

- 98 -



References

Everything in this document has been verified and is backed up by various test programs:

• VICE test-programs: https://sourceforge.net/p/vice-emu/code/HEAD/tree/testprogs/
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• Test programs by Poitr Fusik

• First CSDb "Unintended OpCode coding challenge": http://csdb.dk/event/?id=2417

• Blackmail “FLI Graph v2.2”

• Wizball (LAX#imm usage)

• Spectipede tape loader (ANE#imm usage)

• Turrican 3 scroll routine (ANE#imm usage)
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• http://www.oxyron.de/html/opcodes02.html  

• http://www.ataripreservation.org/websites/freddy.offenga/illopc31.txt  

• http://www.ffd2.com/fridge/docs/6502-NMOS.extra.opcodes  

• http://visual6502.org/wiki/index.php?title=6502_Unsupported_Opcodes  

And some more bits of info were nicked from these places:

• http://www.atariage.com/forums/topic/168616-lxa-stable/#entry2092077  

• http://www.pagetable.com/?p=39  

• cbmhackers mailing list

• https://wiki.nesdev.com/w/index.php/CPU_unofficial_opcodes  

Last not least, some example code snippets were borrowed from elsewhere too:

• http://codebase64.org/doku.php?id=base:decrease_x_register_by_more_than_1  

• http://codebase64.org/doku.php?id=base:some_words_about_the_anc_opcode  

• http://codebase64.org/doku.php?id=base:advanced_optimizing  

Please don’t mind the few unattributed anecdotal quotes in the text (printed in italics) – The text 
was not meant for publication initially and I forgot who posted what. The respective authors are 
probably present in the following list afterall:
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Wanted

This document could still be improved and extended, contributions welcome! If you want to help
send your contributions to groepaz@gmx.net !

• While the dependency on RDY of ANE#imm and LAX#imm can be verified on the C-64 by
test programs, it can not be explained 100% properly (yet). More investigation by someone
who is able to read die shots may help with that.

◦ More examples of where those two have been used in real world code, which will help
to determine the “best” value (eg for using it in emulation).

◦ LAX#imm appears to be more stable than commonly assumed – it would be interesting
to find someone with a machine that actually behaves non stable for this opcode.

• 'unstable address hi byte' opcodes' page boundary crossing and RDY behaviour needs to be
verified on more CPUs.

• Some opcodes, such as ARR, should also be tested on a disk drive while data is being read.

• More example code snippets would be great (sharing is caring!)

• Examples of interesting (ab)use of the decimal mode

• Examples of interesting (ab)use of the dummy memory accesses

• Experienced 6502 coders from other platforms (Atari 2600/800, Apple II, VIC-20, Plus 4
…) who port the test cases and check them on other 6502 variants and platforms.
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History

• December  24th,  2020  (V0.95)  –  removed  invalid  RLA example,  added  chapter  about
unintended memory accesses,  added opcode matrix  with comments,  added note on  LAX
#imm in  Wizball,  added  notes  on  ANE#imm in  real  world  code,  added  note  on  the
supposedly unstable NOPs, corrected some spelling errors, added raster sync SHX and SHY
examples, added additional mnemonics for NOP that are apparently used in NES land, fixed
link(s)  to  sourceforge,  fixed some simulation links,  fixed  a  few more  details  (thanks to
Copyfault and Mac Bacon for proofreading).

• December 24th, 2019 (V0.94) – added more detailed description of flags behaviour for some
opcodes,  updated  some  ANE/LAX details,  fixed  description  of  carry flag  for  ARR,  more
precise description of the SHA/SHX/SHY/TAS unstable behaviour, added references to new
tests  to  SHA/SHX/SHY/TAS,  updated  TAS example code,  added more details  to decimal
mode BCD fixup and flags behaviour, added cross references to the decimal mode chapter to
opcodes  that  depend  on  the  decimal  flag,  added  chapter  about  bugs  and  quirks,  added
description of “Blackmail FLI” to combined examples, added more example code snippets
so each opcode has at least one, added some missing references to test programs, Added
alternative  Mnemonics  found  in  AEGs  patched  Turbo  Assembler,  sorted  greetings
alphabetically

• December 24th, 2018 (V0.93) – Added description on CPU flags naming, flag usage is a bit
more detailed in tables, added some details on decimal mode, In some descriptions flipped
the order of sub instructions around to match the logical order, added missing note on the
RDY line dependency of ANE and LAX, last not least all sections have proper headers now.

• December 24th,  2017 (V0.92)  – Added a couple unusual  Mnemonics  used by the Atari-
centric MAD-Assembler, use “Andale Mono” instead of “Aerial Mono” - the later would
produce broken ligatures. A few formatting fixes. Fixed description of the page-crossing
anomaly of “unstable address high byte” group.

• December 24th, 2016 (V0.91) – Fixed some typos, added a few more examples.

• December  24th,  2015  (V0.9)  –  Fixed  cosmetical  issues  (justification),  fixed  link(s)  in
references,  added  notes  on  ANE/LAX#imm usage,  added  chapter  about  unintended
addressing modes, added references to test code from 64doc.txt, added note on decimal flag
for RRA and ISC, fixed error in ANE example, added examples for RLA and LAS (including
great explanation by Color Bar, thanks!)

• December 24th, 2014 – First public release

• November 2014 – Finally found the time to clean up this document and showed it to a bunch
of people for proof reading (unreleased)

• some time 2013 – Started pasting together various information for personal use

The Truth is out there
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