

 	skip to content

 [image:]Codebase64 wiki

 User Tools

 	Log In

 Site Tools

 Search

 Tools
Show pagesource
Old revisions
Backlinks
Recent Changes
Media Manager
Sitemap
Log In

>

 	Recent Changes
	Media Manager
	Sitemap

 Trace: • irq-tape_loader

 Sidebar

Menu

	 Codebase

	 CPU (6502/6510)

	 SID - Sound & Music

	 VIC - Graphics

	 Demo effects

	 CIA (6526)

	 Interrupts

	 Maths & Algorithms

	 Input/Output

	 Cracking/Viruses

	 Cross Development

	 Programming Languages

	 Kernal & Basic ROMs

	 Third party HW

	 Game Coding

	 Most used tools

	 Mags

	 Books

	 User Projects

	 Links

Meta

	 Guidelines

	 Quick Howto

	 Source conversion

	 Wiki Syntax

	 Playground

	 History

	 Download the wiki

	 Contact

 base:irq-tape_loader

Table of Contents

	IRQ-Tape Loader by Laze Ristoski (Cybertronic Studios)

	0. My history

	1. What is an IRQ-Tape Loader?

	2. The I/O ports

	3. The pulses

	4. Asynchronous transfer

	5. The Checksum

	6. The registers

	7. An example

	IRQ-Tape Loader by Laze Ristoski (Cybertronic Studios)

	0. My history

	1. What is an IRQ-Tape Loader?

	2. The I/O ports

	3. The pulses

	4. Asynchronous transfer

	5. The Checksum

	6. The registers

	7. An example

IRQ-Tape Loader by Laze Ristoski (Cybertronic Studios)

(This rant is mirrored from Cadaver's site)

Welcome to my first tutorial written for Covert BitOps about IRQ-Tape Loaders.

0. My history

	 1986 This year I had my first C64 which was soon sold. Reason: I was 1 year old then. :)

	 1991 Got another C64C. I had no games, so I had to type them from various books.

	 1992 I started learning BASIC. This year I founded my own group 'Ninja-Soft Technologies'

	 1993-1996 BASIC, BASIC, BASIC…

	 1997 Started learning assembler. Never touched BASIC since then.

	 1998-2001 Coding games, utilities, intros, note writers, crunchers, IRQ loaders, etc.

	 2002 Changed the name of the group into 'Cybertronic Studios'

There was PC stuff mean while, but that is out of scope.

1. What is an IRQ-Tape Loader?

These loaders are very common in tape originals. They show a bitmap and play
music while the game is loading.

Advantages of IRQ based loaders:

	 You can have music playing while loading. This is the only way to achieve it. Although, you don't need an IRQ if you just want to show a bitmap.

Disadventages of IRQ based loaders:

	 Slower loading than normal TURBO TAPE files.

	 A little bit more difficult to write than normal (non-IRQ) TURBO TAPE loader.

2. The I/O ports

First we should understand how to communicate with the tape recorder. Unlike
normal tape recorders, this one uses a digital record which is consisted of
pulses. To generate a pulse, all we need to do is to invert bit 3 of the DR
register.

Here is a very simple routine to achieve this:

LDA $01
EOR #$08
STA $01

But, how do we read this? The read line is connected to CIA1's FLAG line.
A special feature of this line is that it is sensitive to Negative Edge
(changing from 1 to 0). Commodore's tape recorder has built-in invertor which
inverts this line on every pulse. So we can't read every pulse, but every second
pulse. We can read the FLAG line from $DC0D, but we don't have to since we are
using an IRQ to achieve this.

3. The pulses

You maybe noticed that there is nothing we can use for handshaking. Yeah, it's
true, the tape is an asynchronous device. But how do we write 0 or 1 to the tape?
Actually, we measure the pause between each pulses. Shorter pause is 0 and
longer pause is 1.

From now on, I'll use the term pulse to refer the pause between each succesive
pulses.

Here are the pulses used in normal turbo tape:

0 - 216 cycles.
1 - 326 cycles.

When reading, the timer should be somewhere between these two values. The
actual value for the timer is 263 cycles.

But, these values are inadequate since we are showing a picture and playing
music. Also note the badlines. So we need more tolerant values.

Here are the values I use for an IRQ-Loader:

0 - 446 cycles.
1 - 668 cycles.
Timer - 576 cycles.

I mentioned that we can read each second pulse (I don't mean the pause), so when
writing to tape we have to divide each pause on two parts. (e.g. 446 cycles = 2
x 223)

4. Asynchronous transfer

Since we have no handshaking lines to use, there has to be another way to stay
synchronised. The method is the same as normal turbo tape. We write a series
of bytes with value 2 (the kernal routines use another way, which is out of
scope). After these bytes, we write a count-down (bytes with values from 9 to 0)
used for checking the synchronisation. Then goes the actual data like start
address, end address and the program itself. It's important to have both start
and end address, so the loader knows how many bytes to load and then read the
checksum. In the example below, instead of a count-down, there is a Synchro
Check Byte (value = $5A).

5. The Checksum

It would be fine if we have a way to detect possible errors in transmission.
These errors can be caused by wrong azimuth.
A way exists and it's very simple. Before loading we initialise a variable to 0
and we add the bytes here. Then we check this with the checksum from the tape.
The checksum is always the last byte of the file. An important thing is to know
that we can not use OR operation for this as once the value will become $FF it
will remain. So we will use EOR (exclusive or) for adding the byte values.

6. The registers

To understand the example below, you need at least a basic knowledge of
Assembler and the registers used for communication.

$01 (Data Register - DR)
bit 7,6 - undefined
bit 5 - Cassette Motor Control (0=on, 1=off)
bit 4 - Cassette Switch Sense (1=switch closed)
bit 3 - Cassette Data Output Line (invert to write a pulse)
bit 2 - CHAREN (0=char rom in) [Not Needed]
bit 1 - HIRAM (0=kernal rom out) [Not Needed]
bit 0 - LORAM (0=basic rom out) [Not Needed]

$DC0D (CIA1 Inrerrupt Control Register - ICR)
bit 7 - interrupt occured (1 if any interrupts)
bit 6,5 - unused
bit 4 - FLAG
bit 3 - SP [Not Needed]
bit 2 - Alarm [Not Needed]
bit 1 - Timer B
bit 0 - Timer A

7. An example

The best way to understand this stuff is an actual example. Here are the
routines used for save and load.

- SAVE

	SLBS = $AC
	SHBS = $AD
	SLBE = $AE
	SHBE = $AF
	LLBS = $02
	LHBS = $03
	LLBE = $04
	LHBE = $05
	SYNCLEN = $AB
	CHECKSUM = $D7
	BUFFER = $BD
	BITCNT = $A3

	SEI
	JSR $F838	; Show 'Press record and play on tape' message and wait
	LDA #0 ; until the user does that
	STA $90		; Initialise system's status variable (0 - no error)
	LDA # [SLBS]	; LO-Byte of the save add. (This is where the prg. we
	STA SLBS ; are saving is in memory)
	LDA # [SHBS]	; HI-Byte...
	STA SHBS
	LDA # [SLBE]	; LO-Byte of end address
	STA SLBE
	LDA # [SHBE]	; HI-Byte...
	STA SHBE
	LDA # [LLBS]	; LO-Byte of the load add. (Where the prg. should be
	STA LLBS ; loaded)
	LDA # [LHBS]	; HI-Byte...
	STA LHBS
	LDA # [LLBE]	; LO-Byte of end address
	STA LLBE
	LDA # [LHBE]	; HI-Byte...
	STA LHBE
	LDA $D011	; Disable VIC-II (This has to be done because of
	AND #$EF ; badlines
	STA $D011
	LDA $01		; Disable BASIC ROM and enable cass. motor
	AND #$DE
	STA $01
	LDX #$00	; Make a short pause so the cass. motor can reach the
	LDY #$00 ; needed speed
PAUSE	DEY
	BNE PAUSE
	DEX
	BNE PAUSE
	LDA #$02	; Length of synchronisation record
	STA SYNCLEN
	JSR SYNCHRO	; Write synchronisation
	LDY #$00
	LDX #$1E	; X is used for the Time Constant (TC) needed for the
CONT	LDA $LLBS,Y ; pulse length
	JSR SAVE
	LDX #$22	; TC
	INY
	CPY #$04
	BNE CONT
	LDY #$00
	STY CHECKSUM
	LDX #$22	; TC
MORE	LDA (SLBS),Y	; Get byte of the program
	JSR SAVE	; Save the byte on tape
	LDX #$1F	; TC
	INC SLBS
	BNE INCR
	INC SHBS
	DEX		; TC = TC - 2 (because INC SHBS steals some cycles)
	DEX
INCR	LDA SLBS	; All bytes saved ?
	CMP SLBE
	LDA SHBS
	SBC SHBE
	BCC MORE	; No, save more
	LDX #$20	; TC
	LDA CHECKSUM	; Save the CHECKSUM
	JSR SAVE
	LDA $01		; Disable cass. motor and enable BASIC ROM again
	ORA #$21
	STA $01
	LDA $D011	; Enable VIC-II
	ORA #$10
	STA $D011
	LDA #$01	; CAS1 (This is a system variable. 1 - cass. motor off)
	STA $C0
	CLI
	RTS

SYNCHRO LDY #$00
	LDX #$25	; TC
NEXT	LDA #$02	; 2 is the synchro byte
	JSR SAVE	; Save it
	LDX #$23	; TC
	INY
	BNE NEXT	; Save more synchro bytes
	LDX #$22	; TC
	DEC SYNCLEN
	BNE NEXT	; Save more synchro bytes
	LDX #$22	; TC
	LDA #$5A	; Synchro check byte
	JSR SAVE	; Save it
	RTS

SAVE	STA BUFFER	; Store the byte in a buffer
	EOR CHECKSUM
	STA CHECKSUM	; Calculate checksum
	LDA #$08
	STA BITCNT	; Initialise bit counter
GO	ASL BUFFER
	JSR WAIT	; Make the needed delay
	DEC BITCNT
	BNE GO
	RTS

WAIT	LDA #$06	; Used for inverting the cass. data output line
	JSR WAIT2
	LDX #$2A	; TC
	LDA #$0E	; Used for inverting the cass. data output line
	JSR WAIT2
	LDX #$26	; TC
	RTS

WAIT2	DEX
	BNE WAIT2	; Make the needed delay
	BCC B0		; If recording a 0 bit, no more delay needed
	LDX #$15	; TC
B1	DEX
	BNE B1		; Make more delay if bit 1
B0	STA $01		; Record a pulse on tape
	RTS

Some explanations: SLBS, SHBS, SLBE, SHBE must be on zero page and take
successive bytes in memory. The same applies for LLBS, LHBS, LLBE, LHBE. There
are save and load addresses. You might wonder why. This is because when saving
we can have the pic. for example at addr. $6000, but when loading we might need
it at addr. (e.g. $E000). TC is the time constant. This is used to make the
pause always the same, because different op-codes are processed which take
different nr. of cycles.

- LOAD

	SEI
	LDA #$00	; Set black screen
	STA $D020
	STA $D021
	LDA #$00	; Set start and end addresses of the bitmap
	LDX #$E0
	STA $AC
	STX $AD
	LDA #$40
	LDX #$FF
	STA $AE
	STX $AF
	LDY #$00	; Clear the bitmap
CLRMAP	LDA #$00
	STA ($AC),Y
	INC $AC
	BNE INCR1
	INC $AD
INCR1	LDA $AC
	CMP $AE
	LDA $AD
	SBC $AF
	BCC CLRMAP	; If not all cleared, clear more
	LDA #$00
	STA $D011	; Disable VIC-II (because the bitmap is still not loaded)
	LDA $01		; Disable KERNAL and BASIC ROM and enable cass. motor
	AND #$DD
	STA $01
	LDA #$00	; Disable VIC-II interupts
	STA $D01A
	LDA $D019	; Acknowledge VIC-II interupts
	STA $D019
	LDA #$7F	; Disable CIAs interupts
	STA $DC0D
	STA $DD0D
	LDA #$90	; Enable FLAG (cass. input) interrupt
	STA $DC0D
	LDA #$40	; Set timer value to 576 cycles
	LDX #$02
	STA $DC06
	STX $DC07
	LDA $DC0D	; Acknowledge CIAs interrupts
	LDA $DD0D
	LDA #<NMI	; Initialise NMI vector
	LDX #>NMI
	STA $FFFA
	STX $FFFB
	LDA #<IRQ	; Initialise IRQ vector
	LDX #>IRQ
	STA $FFFE
	STX $FFFF
	LDA #$08	; Initialise BIT COUNTER
	STA BITCNT
	LDA #$00	; This flag is used as MUSIC PLAY ON/OFF (0-off) because
	STA $FE		; music is still not loaded
	STA $FF		; Flag for the part that is loading
	CLI
NEXT	JSR PRGLOAD	; This routine waits until a part is loaded
	INC $FF		; Increment loading part flag
	LDA $FF
	CMP #$01	; The music has been loaded
	BNE P1
	LDA #$00	; Initialise music
	TAX
	TAY
	JSR $7000	; The init add. of the music I'm using
	LDA #$01	; Set MUSIC PLAY flag. The music is loaded now, so it
	STA $FE ; can be played
	JMP NEXT	; Load next part
P1	CMP #$04	; The BITMAP (screen, color and bitmap) has been loaded
	BNE P2
	LDA #$94	; Change VIC-II bank ($C000-$FFFF)
	STA $DD00
	LDA #$08	; Set bitmap memory
	STA $D018
	LDA #$D8	; Set multi-color mode
	STA $D016
	LDA #$3B	; Set bitmap display mode
	STA $D011
	JMP NEXT	; Load next part
P2	CMP #$05	; First part of game has been loaded (start - $7000)
	BNE P3
	LDA #$00	; Disable music (the game will overlap it)
	STA $FE
	LDX #$18	; Disable SID voices
	LDA #$00
CLSID	STA $D400,X
	DEX
	BPL CLSID
	JMP NEXT	; Load next part
P3	CMP #$06	; All parts loaded ?
	BNE NEXT	; No, load next part.

	SEI
	LDA $01		; Disable cass. motor and enable ROMs again
	ORA #$22
	STA $01
	LDA #$01	; CAS1 (This is a system variable. 1 - cass. motor off)
	STA $C0
	LDA #$00	; SID volume = 0
	STA $D418
	JSR $E5A8	; Kernal routine: Initialise VIC-II
	LDA #$97	; Change VIC-II bank ($0000-$3FFF)
	STA $DD00
	CLI
	JMP $0810	; Jump to program's start address (change this if
 ; another is used)
PRGLOAD LDA #$00	; Flag: synchronisation reached (0-no, 1-yes)
	STA $FC
	STA $FD		; Flag: part loaded (0-no, 1-yes)
	STA CHECKSUM	; Initialise checksum
WAIT	LDA $D012	; A routine for playing the music
	CMP #$7C
	BMI NOMUSIC
	CMP #$84
	BPL NOMUSIC
	LDA $FE		; MUSIC PLAY Flag (1-play, 0-no)
	BEQ NOMUSIC
	JSR $7003	; The play add. of the music I'm using
NOMUSIC LDA $FD		; Is the part loaded ?
	BEQ WAIT
	RTS

IRQ	PHA
	TXA
	PHA
	TYA
	PHA
	LDA $DC0D	; See if counter has finished counting (no = bit 0,
	LDX #$19	; yes = bit 1). Start counter again
	STX $DC0F
	LSR A		; Get counter finished flag in CARRY
	LSR A
	ROL $BD		; Put the bit in buffer
	LDA $BD
	INC $D020	; Make the screen flash
	DEC $D020
	LDX $FC
	BEQ GETSYNCHRO	; If no synchronisation, reach it
	DEC BITCNT
	LDX BITCNT
	BEQ CONT
	JMP RET
CONT	LDX #$08
	STX BITCNT
	LDX $FC
	CPX #$01
	BEQ TEST	; Synchro Check Byte
	CPX #$02
	BEQ ADDRESS	; Start and end address
	CPX #$03
	BEQ PROGRAM	; Main part
	CPX #$04
	BEQ CHKSUM	; Checksum

GETSYNCHRO
	CMP #$02	; 2 is the synchro byte
	BNE RET
	INC $FC
	JMP RET

TEST	CMP #$5A	; $5A is the synchro check byte
	BEQ GOOD
	LDA #$00	; Synchronisation invalid. Retry
	STA $FC
	JMP RET
GOOD	INC $FC
	LDA #$AC	; $00AC is the place in memory where we keep the start
	LDX #$00 ; and end address
	STA $02
	STX $03
	JMP RET

ADDRESS LDY #$00
	STA ($02),Y
	INC $02
	LDA $02
	CMP #$B0	; All bytes of the address read ?
	BNE RET
	INC $FC
	JMP RET

PROGRAM LDY #$00
	STA ($AC),Y	; Store byte in memory
	EOR CHECKSUM	; Calculate checksum
	STA CHECKSUM
	INC $AC
	BNE INCR2
	INC $AD
INCR2	LDA $AC
	CMP $AE
	LDA $AD
	SBC $AF
	BCC RET
	INC $FC
	JMP RET

CHKSUM	CMP CHECKSUM
	BNE ERROR
	LDA #$00	; Set no synchronisation (for the next part)
	STA $FC
	LDA #$01	; Part loaded flag
	STA $FD
	JMP RET

ERROR	LDA $01		; Disable cass. motor
	ORA #$20
	STA $01
	LDA #$0F	; Set lt.grey border indicating load error
	STA $D020
	LDA #$00	; Set SID volume to 0
	STA $D418
LOOP	JMP LOOP	; Endless loop

RET	LDA $DC0D	; Acknowledge interrupt
	PLA
	TAY
	PLA
	TAX
	PLA
NMI	RTI

Some explanations: When playing the music, the program checks to see if the
raster reg. is between $7C and $84. We need to have more lines, because of the
interrupt. If we check for only one specific raster line the music will play
slow as there will be pulses that will exactly happen on this line.
If the game exceeds $7000 (because the music starts here) it should be divided
in two parts. First part: start address to $7000. Now the loader disables the
music. Second part: $7000 to end address.
The loader assumes the play button is pressed as the loader itself is saved on
the begining of the record and has an autostart. You might need to add a code
that will restore the original values of the vectors used for autostart.
If the game reaches $C000, you should turn the screen off, when it reaches
$7000 (together with the music). This is because the BITMAP is located at $C000.

	 The routines above are given just for educational purposes. If you want to use the loader, download the source in JC-ASS together with the instructions My MULTI-LOAD can be freely used for commercial purposes, but don't forget to give me a credit. :)

	 I was told that some music routines play faster than normal when used in the loader. I've never noticed such a problem. However, if this happens just reduce the number of raster-lines in the loader routine (eg. $7C to $80, instead of $7C to $84).

	 Finaly, huge thanks goes to Joe Dixon and Richard Bayliss for testing the routines, and reporting some bugs I made when I retyped them. Anyway, the JC version has always been bug-free :)

Laze Ristoski

Additional note:

The JC-ASS and MULTI-LOAD source no longer exists (unless anyone still has it). So I decided to make a slightly modified tape master using the example source. Binaries and C64Studio/ACME source code, with instructions are available from Laze's Turbo Saver+Loader/Tape Master Source + Binary files

[image:]

 base/irq-tape_loader.txt · Last modified: 2018-04-07 11:28 by richard

 Page Tools

 	Show pagesource
	Old revisions
	Backlinks
	Back to top

 Except where otherwise noted, content on this wiki is licensed under the following license: CC Attribution-Noncommercial-Share Alike 4.0 International

 [image: CC Attribution-Noncommercial-Share Alike 4.0 International] [image: Donate]
 [image: Powered by PHP]
 [image: Valid HTML5]
 [image: Valid CSS]
 [image: Driven by DokuWiki]

 [image:]

