PROGRAM PROTECTION MANUAL
FOR THE C - 64
VOLUMET =

15.

16.

17.

18.

TABLE

SOFTWARE LAW

ARCHIVAL COPIES . . .

COPY PROTECTION . . .

BASIC PROTECTION . . .

DISK DRIVE OVERVIEW .

BAD BLOCKS

OF CONTENTS

PRG, SEQ AND USER FILES.

COMPILED PROGRAMS. . .

MACHINE LANGUAGE . . .

ADVANCED BASIC PROTECTION.

ML PROTECTION
CARTRIDGE PROTECTION .
CARTRIDGES 16K OR MORE

ADVANCED ML PROTECTION

- . - . . -

- - - L) - -

- - - - . -

PROTECTING YOUR OWN SOFTWARE . . .

PROGRAM DISK DOCUMENTATION ., . . .

ADVANCED CARTRIDGES .

MEMORY MAPS e e e ..

11

14

19

31

34

38

40

46

51

62

70

72

81

83

87

92

/8

COPYRIGHT NOTICE

PROGRAM PROTECTICN FOR THE C-64
COPYRIGHT 1984 BY T. N. SIMSTAD
ALL RIGHTS RESERVED

This manual and the computer programs on the accompanying
floppy disks, which are described by this manual, are copyrighted
and contain proprietary information belonging to T. N. Simstad.

No one may give or sell copies of this manual or the
accompanying disks or of the listings of the programs on the
disks to any person or institution, except as provided for by the
written agreement with T. N. Simstad.

No one may copy, photocopy, reproduce, translate this manual or
reduce it to machine readable form, in whole or in part, without
the prior written consent of T. N. Simstad.

WARRANTY AND LIABILITY

Neither C S5 M SOFTWARE, T. N. Simstad, nor any dealer
distributing the product, makes any warranty, express or implied,
with respect to this manual, the disks or any related item, their
quality, performance, merchantability, or fitness for any
purpose. It is the responsibility solely of the purchaser to
determine the suitability of these products for any purpose.

In no case neither C § M SOFTWARE nor T. N. Simstad will be
held liable for direct, indirect or incidental damages resulting
from any defect or omission in the manual, the disk or other
related items and processes, including, but not limited to, any
interruption of service, loss of business, anticipated profit, or
other consequential damages,

THIS STATEMENT OF LIMITED LIABILITY IS IN LIEU OF ALL OTHER

WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE,., Neither C S
M SOFTWARE nor T. N. Simstad assumes any other warranty or

liability. Nor do they authorize any other person to assume any
other warranty or liability for it, in connection with the sale
of their products.

UPDATES AND REVISIONS

T. N. Simstad and C S M SOFTWARE reserves the right to correct
and/or improve this manual and the related disk at any time
without notice and with out responsibility to provide these
changes to prior purchasers of the program.

Although every attempt to verify the accuray of this document has
been made, we cannot assume any liability for errors or
omissions. No warranty or other guarantee can be given as to the
accuracy or suitability of this book or the software for a
particular purpose, nor can we be liable for any loss or damage
arising from the use of the same.

INTRODUCTION

This may be the most important part of the book to read. T will
give you some tips on how to get the most out of this beook. If
you are just starting to learn program protection you should
start at chapter 1 and read the book thru to the end. If you have
some experience at program protection you should start out at
chapter 1 and read the book thru to the end. Each and every
chapter will build on the previous one. Every chapter contains
hints and suggestions that may be of benefit to you later.

First start out by loading the directory on the disk. Do this
now.

Can't load the directory, can you? 2 The directory has been
specially modified to prevent you from listing 1it. Your disk
drive will continue to load the directory until your computer
crashes. The only way to stop the directory from loading is to
turn the computer off and then back on again.

Many modifications may be made to disk based program to make it
unlistable. In this book you will learn to restore the disk and
how to modify your own disks., Many important ideas will be
covered in the book, if you see an item repeated in two or more
chapters it is because it is important. Take your time while
reading this book, underline the passages that are important to
you. If something does not make sense the first time that you
read it, don't worry about it. A lot of information is contained
in this book, it may take you two or three times to fully
understand every chapter.

If you wish to try your hand at program protection, make the
modifications to a disk that does not contain any wvaluable
information. This way if you should make a mistake, you will not
loose any valuable information. The best way to learn 1is by
doing. As you read this book you should try doing some of the
protection schemes listed.

Take your time., It took me months to compile the data contained
in this book. You probably won't understand it all the first time
you read it.

RISK DIRECTORY

MOVE BASIC FRG 1
DISK CHECKER FRG 5
ID CHECKER FRG 4
AFFEND FRG 1
BLOCK AL % FREE FRG !
DISK ADDR CHANGE FRO 4
DIGK DR FR@ a3
BACKEUF 228 FRE 7
TEST #1 FRG Z
EEYBRD BUFFER FRG 1
ERRUR CHECK FRLG =2
USkR FlLEs FRG 5
USER. WOW FRG 8
SUFER LINES FRG I
ML &% BASIC FRG 4
ML % HASIC #2 FRG 4
UL & u FRia &
MOD FOINTERS FRé 1
sFEED COFY FRG 11
TEST Mo FRG 3
FRESTORE FRG 1
LLMUON 8Y&S819% FRG 17
HIMON SYS491858 FRG 17
LOMON SYS52768 FRG 17

THE DIRECTORY OF THE DISK HAS BEEN MODIFIED TO FREVENT YOU
FROM LISTING IT. IT WILL BE NECESSARY TO RESET THE TRACK
AND SEUCTOR FOINTERS TO MAKE THE DISE LISTABLE. THE FUOINTERS
HAVE BEEN CHANGED TO FLACE THE DIRECTORY IN AN ENDLESS
LQUF.

OTHER MODIFIGCATIONG HAVE BEEN MADE. SEE IF YOU CAN FIND
THEM ALL. THE CHAFTER ON THE DISK DRIVE WILL DOCUMENT ALL
THAT NeEDS TO BE CHANGED. GOOD LUCK!

THE VERSIUON OF DISK DR CONTAINED ON THIS DISH HAS BEEN
SLIGHTLY MODIFI&ED TO MARE IT WORK ON D1SKES WILL ENDLESS
LOUF DIRECTORILIES.

ALL THE FROGRAMS CONTAINED ON THE DISK ARE FUBLIC DOMAIN.
FEEL FREE TOQ DO WITH THEM AS YOU WISH.

PROGRAM PROTECTION FOR THE C-64 Page 5

SOFPTWARE LAW

The purpose of this chapter is to inform the wuser of the C-64
computer what they may and may not do with the programs they have
purchased. I am not a lawyer and I am not trying to give legal
advice., What I am trying to do is make the average user more
aware of some of the legal aspects of software law. If vyou have
any specific questions go to vour own lawyer or a lawyer who
specializes in software law.

Programs may take many forms. They may be purchased on disks,
cassette tapes, cartridges or stringy floppies for the C-64. The
only difference between a blank disk and a word processing
program is a small amount of magnetic information that has been
placed on the disk., Usually the magnetic information can be
placed on the disk in a matter of minutes. With todays high speed
copy machines, programs may be duplicated within a matter of
minutes. This will include the time necessary to verify the disk.
This will make certain that the disk will perform as expected.

Many programs take thousands of hours to develop. A good program
will need a great amount of time to develop and debug. Anyone who
has written even a simple program in BASIC can verify this fact.
Consider the time required to write a good data base or a good
word processor, Qften times the program will be developed by a
group of programmers, all working together to finish the program.
Each programmer may be a specialist in a particular aspect of the
program. How can a programmer make any money if it takes months
to develop a program and only minutes for a software pirate to
copy?

Two methods currently exist to protect the program from
unauthorized copying. Both offer the programmer some amount of
protection for his software. First is the legal methoed, this is
the law of the country where the program is used. Second is the
copy protection method, this is the method that the programmer
uses to actually prevent unauthorized duplication of the
software. In this chapter I will cover a few of the more popular
legal ways of protecting computer software,

The Congress of the United States has passed a number of laws to
protect the author of a computer program. There are many wavys
that a programmer may legally protect his software from being
copied.

1. Trade Secret:

Trade secrets will protect the program as long as the program 1is
kept a secret. If you keep your program secret and the code that
makes the program work a secret, you have the best protection of
all. The difficulty comes in when you try to sell the program to
the customer. If you don't reguire the customer and all the users
to sign a non-disclosure agreement, your trade secret status may
be lost, Trade secrets work well during the development phase of
the program, but they are impractical if the program 1is to be
mass marketed.

PROGRAM PROTECTION FOR THE C-64 Page 6

2. Patent Protection:

Copyrights only protects the expression of an idea, whereas a
patent will protect the idea itself. If your program is granted a
patent, you will have a seventeen year monopoly on your idea.
This sounds like it might be the ideal way to protect vyour
program. Right?

WRONG! Patents many times take two or more years to obtain, vyour
program may be obsolete before it has patent protection., Also the
patent office may be unwilling to provide vyour program with a
patent.

3. Trademarks:

The trademarks can only protect the name of the program, not the
program itself, If your program has a good name, you will want to
use a trademark to prevent anyone else from using the same name
on their products.

4. Copyright:

A copyright will protect the expression of an idea, not the idea
itself. Although this last statement may sound confusing, it
really is easy to understand.

Most lawyers agree the best legal protection for your scoftware is
through the use 0f the copyright protection laws. In recent years
the copyright laws have been updated and protection has been
specifically extended to computer programs. This coverage will
apply if the program is on a disk, cassette tape, cartridge or
part of the internal ROM memory of the computer.

I stated earlier that the copyright will protect the expression
of an idea, not the idea itself. Let's look at this example. You,
as a software author are working on word processing program. This
is to be the best word processing program ever made. Tt will have
all the functions of any other word processor plus a few new
ideas of your own. While you are writing the program, vyou make
every effort to insure that no one gets a copy of vyour code,
thereby insuring vyour trade secret protection is maintained. Once
the program is finished you copyright the program and begin to
market the program. A few weeks later you find out that someone
else has just marketed a new word processing program, this
program has every feature that your program has. The two programs
are very similar and perform all the same functions. Could this
be a case of copyright infringement? Possibly, or it could be the
case of two programmers simultaneously creating similar programs.
Even though the programs appear to be similar, they have been
created independently of each other. The other program may
perform the same functions that yours does, but it does it in a
different way. It is not what the program does, it is how it does
it. Thus the statement: A copyright will protect the expression
of an idea, not the idea itself.

PROGRAM PROTECTION FOR THE C-64 Page 7

Let's take a look at another example. You develop a word
processing program. A software pirate buys a copy of vyour
program. He changes the name and a few lines of code. The pirate
then sells the program as his own. This is a clear cut case of
copyright infringement. One can not Jjust change a few simple
lines of code and say that they are the author. If you take the
pirate to court it would be an easy c¢ase to win. The program
would have to be substantially different from your program in
ordered to be considered unique.

The copyright is automatically born when the program 1s created
and transferred from you to paper, disk or other media. You have
up to five years to perfect your copyright with the Copyright
Qffice. When you wish to perfect the copyright, you must follow a
few simple steps. First, you need to place the proper copyright
notice in a consplicuous place, you must file the proper form with
the Copyright Office, send in a check for Ten deollars, the first
twenty five pages and the last twenty five pages of your program.
It would be advisable teo contact your lawyer for further
information on how to proceed.

You, as a software author, have copyrighted your program and have
done it properly. What is to prevent scome one from copying vyour
program? The copyright law states that anyone who willingly
copies your program is in violation of the law. They don't have
to sell your preogram to violate the law, they only have to copy
it to be in violation. The law does provide for the owner of the
program to make one copy for archival purposes only.

If you find that someone has violated the law and is copying your
program you can sue that person. You may recover any actual
damages that you incurred, your attorneys fees, court c¢osts and
whatever other damages the court wishes to order. You may also
request an injunction to prevent the pirate from any further
copying of your program.

Your local library is a good source of reference on computer
software law. Many books have been written on the subject in the
past few years. Try to get the most recent one, because the law
is changing almost daily.

5. Limiting liability:

This form of protection may very well be the most important for
the software author. By limiting his liability the software
author can protect himself from unhappy or dissatisfied
customers. The personal computer is covered by consumer
protection laws. Any time the consumer purchases a software
program {(or most any item) certain warranties go with.

Three types of warranties are: express warranty, implied warranty
of fitness and implied warranty of merchantability. The express
warranty is created by the wording of the program or a salesmans
words (i.e. "This program will sort five thousand files in two
seconds”). If the product won't do it, it shouldn't say 1it. The
implied warranty of fitness only comes into play if a salesman
states that the program will fulfill his needs and the customer
buys the product based upon the salesmans recommendations. Again

PROGRAM PROTECTION FOR THE C-64 Page 8

if the product won't do it, don't say that it will. The implied
warranty of merchantability states that the product is as good as
any one elses. This warranty 1s created automatically when your
program is sold.

Why then, is limiting liability the most important type of
protection for the software author? Because 1f vyou, as the
software author, don't properly disclaim each and every warranty,
the author or seller may be open to a lawsuit if the product does
not perform as the buyer expected it to. In many states the
disclaimer must be placed in a conspicuous location, visible
without opening the package, in order to be valid. If you put the
disclaimer in the wrong location, it may be considered void.
Contact a lawyer for specific information on limiting vyour
liability if you are considering writing programs.

PROGRAM PROTECTION FOR THE C-64 Page 9

ARCHIVAL COPIES

The dicticnary defines the word ARCHIVE as follows: The place
where records or papers of historical interest are stored. The
meaning in the computer industry has taken a slightly different
turn. An archival copy of a program is a duplicate program that
is stored in a safe place, to be used in the event that anything
should happen to the original. Software laws today provide for
the owner of a program to make an archival copy of the original
program. It is your right to make a copy of any program that vyou
purchase. You alsc have the right to modify the program that vyou
purchase, providing that you don't make copies of the original or
the modified programs for anyone else.

I think that we all have purchased a program, gotten it home and
found that the program did not suit our needs. Sometimes the
program only needed a small change to suit our particular needs.
Other times the program was junk and we just wasted our money. If
you wish to modify the program, you may do so. You may not give
copies of the modified program to your friends., It is still
protected by copyright laws, Changing a few lines of code or
renaming the program will not 1let the purchaser usurp the
copyright law.

Software stored on disk or tape 1is highly susceptible to damage.
Should the original copy of a program become unuseable for any
reason, the user only has to go to his archives and retrieve the
archival copy and he is back in business,

How does one obtain an arvchival copy of a program? Some software
companies provide a backup program for a nominal fee. Others do
not. They leave it up to the individual to make his own copy. In
the interest of preventing software piracy some companies make
their software virtually uncopyable.

What is the owner of the program to do? The manufacturer will not
supply a backup and the program has a great deal of protection
built in to prevent illegal copying. This protection prevents the
legitimate buyer from making an archival copy. It seems some
software companies want people to 'break' their programs in order
to obtain a backup copy. 'Breaking' a program refers to removing
all the protection schemes from a program. 'Breaking' a program
will allow the program to be copied by any convenient method. The
broken program will perform exactly the same as the original. The
only difference between the original and the broken version is
the program preotection. In some ways 1t seems that software
companies are encouraging piracy, by forcing the end user to
break a program in order to obtain an archival copy. Once the
program is broken anyone can copy 1t and many times they do
(illegally of course}. Remember, once vou have purchased the
program it is yours, to do with as you wish. You may modify the
program, you can change the program, vyou can even sell the
original version of the program if you wish., You may NOT make
copies of the program to give or to sell to other people. That is
illegal.

PROGRAM PROTECTION FOR THE C-64 Page 10

I have just received a copy of a program that will copy almost
any disk, errors and all. It takes less than five minutes to make
a copy of a full disk and, in most cases, will make an exact
duplicate of the original program, including any errors. The
major problem with the copy program is that the copied program
will perform just like the original.

You might ask why I think that this is a problem. If the original
disk used 'bad blocks' the copy will use 'bad blocks'. 'Bad
blocks' is a type of program protection that will literally beat
your disk drive to death when the program loads in to memory. The
programmer will intentionally write a bad block on the disk. This
bad block does not contain any information, its only purpose 1is
to generate an error when the disk drive tries to read the block.
The disk drive will make a loud banging sound when it tries to
read this bad block. This banging results from the cam (that
moves the read/write head) bumping against 1its end stop. This
bumping can be very hard on the disk drive., Many disk drives have
been knocked out of alignment while trying to read a bad block.

It is the program author's right to protect his software from
unauthorized duplication. It is your right to protect vyour disk
drive from being beat to death. You have the right to protect
vour investment from being rendered useless. It is your right to
'‘fix' the program so that it will not beat your drive to death.
You also have the right to make an archival c¢opy of vyour
programs. Don't let a protected programs keep you from having the
copy vyou need.

PROGRAM PROTECTION FOR THE C-64 Page 11

COPY PROTECTION

Copy protection refers to the methods that a software author uses
to protect his program from unauthorized duplication. These
methods range from the simple to the bizzare. Most often copy
protection is an afterthought. The software author will spend
weeks or months writing a program. Then he usually spends a few
hours protecting his work. I have seen programs that have taken
literally thousands of hours to write, then the author spends
thirty minutes on the protection scheme.

Programs on cassette may be protected by several methods. The
program may be stored on the tape in several parts. Each part
will load the next part. Information may be stored in such a way
that it may be difficult to copy with only one cassette plaver.
There is not a lot one can do to protect software saved on
cassette. There are a few firms which make an 1interface which
will allow the user to copy any cassette based program to another
cassette. These interfaces will make exact copies of the
original. When one considers the cost of such an interface, it
will provide the most economical methcd of program duplication.
Find a friend who has a cassette player and share the cost of the
interface.

Disk based programs can not be ceopied as easily as cassette based
programs. If they could there would not be any need for this
book. Programs stored on disk have more options as to their copy
protection., The BLOCK ALLOCATION MAP (BAM) may be modified. The
DIRECTORY (DIR) can be hidden from the user or it may be modified
to prevent the user from 1listing the directory. Special
information may be stored on the disk in such a manner that it
may not be easily retrieved by the average user. Many different
types of errors may be intentionally placed on the disk. These
errors will be checked by the program as it runs. If the error is
of the proper type and at the proper location the program will
execute. If some one makes a copy of the original disk and does
not place the errors on the duplicate disk the program will not
run. Disks may be formatted on a disk drive that is not totally
compatible with the 1541. The program will load and run properly,
but duplicates can not be made on the 1541 disk drive.

Information is stored on the disk in what 1is called a BLOCK.
There are 683 blocks of information that may be used on the 1541
drive. Each block may contain up to 256 BYTES of information. ‘ In
addition to the 683 blocks, the disk will also contain some
special information, including SYNC MARKS, ID numbers, CHECKSUM,
the TRACK and SECTCR numbers and another CHECKSUM, The disk drive
uses this special informaticn to process and identify the Dblock.
This special information is referred to as the HEADER. Some
software manufacturers will modify the 'header' in such a fashion
that this block of information is no longer readable by the disk
drive. Once a block has been modified in this manner it 1is
referred to as a BAD BLOCK. Generally a bad block does not
contain any information, it is just there to create an error when
the disk drive tries to read it.

PROGRAM PROTECTION FOR THE C-64 Page 12

I am sure that you have all tried to 1load a disk that has
contained a bad block, While the program is loading the red light
will flash and the disk drive will make a 1loud banging noise.
This noise is generated by the disk drive when it tries to read
the bad block. The disk drive can not read the information
contained in the header. When this occurs the disk drive will
mechanically re-position the read/write head. To do this it is
necessary to pound the stepper motor cam against its end stop.
The read/write head of the disk drive is attached to the stepper
motor cam. When the bad block is encountered, an error will be
generated and the read/write head will 1literally get beat to
death. In other words, if the disk drive tries to read a Dbad
block the read/write head will pound against the end stop in an
attempt to retrieve the information from the disk.

1 know that all of you have heard that there is a problem with
the 1541 disk drives going cut of alignment. Reading and writing
bad blocks is a major contributer to this mis-alignment. Why
would a software manufacturer put bad blocks on a disk when it
may tear up the disk drive when their program tries to read the
bad block??? Because he cares more about protecting his
program from pirates than he does about your disk drive. If vyour
disk drive gets beat to death trying to read his program, that's
your problem {(or so they think}.

While I am on my scap box, I would like to tell a 1little story
that happened to me. About six months ago 1 purchased a protected
program {(cost $95.00). After using this program for less than two
months the program developed a flaw in it (due to its protection
scheme). After contacting the manufacturer, I was told to send in
the original program disk and they would send me a new copy (for
$12.00). The trouble was that I needed the program and could not
afford to wait two or more weeks, as they requested. It was
necessary for me to modify the original disk so that it could be
returned to working condition and it was also necessary to repair
my drive.

In an effort to prevent any one from making a copy ©f the disk
the company used a technigque called bad blocks on the disk. As
you all know, when the disk drive tries to read a bad block the
drive makes a loud banging noise. This noise is a direct result
of the drives stepper motor cam pounding against a stop. This
pounding can be very harmful to the disk drives' mechanical
parts. After the drive mechanism pounds against the stop enough
times, the drives’' stepper motor will become mis-aligned. The
read/write head, which is attached to the stepper motor, will be
beat out of alignment and the disk drive will no longer be able
to read or write any information from the disk.

On the disk I purchased, the program would read a portion of the
program into memory, modify it and re-write the information back
to the original disk. While loading the program, the disk drive
made an unusually loud and hard clicking noise (bad blocks were
used). After this the disk drive had a hard time reading the
information from the disk. After the program had run and all the
infermation had been processed, the program attempted to write

PROGRAM PROTECTION FOR THE C-64 Page 13

the information back to the disk. After partially writing the
information, the program stopped. The disk drive head had been
knocked out of alignment when the program tried to read the bad
block. My disk drive was damaged and the program was rendered
useless, even when used on a good drive. The company's protection
scheme prevented me from making a backup copy of the program and
my drive was made useless.

I cannot begin to tell you of all the people who, after trying to
load one of these protected programs, have had their disk drives
damaged. If you have not had vyour disk drive beaten out of
alignment, just wait. Your turn is coming!

Those of you who have had your disk drive beat out of alignment
may be interested to know that I have just completed writing a
disk drive alignment program. This disk drive alignment program
requires no special equipment, no oscilliscope, no strobe 1light
and most importantly you don't have to be a electronics wizard to
use this program. The program is contained on one disk and a
specially prepared calibration disk is supplied with the program.
The calibration functions appear on your TV or monitor screen.
Also I have included instructions for a 'fix' that has prevented
many disk drives from ever going out of alignment again.

Cartridge programs may also be copy protected. The fact that the
program resides on a cartridge, is copy protection enough for
most people. Down loading the cartridge to disk (cassette) can
usually be accomplished very easily. The information stored on
the cartridge may then be 1loaded in the normal fashion and
executed, More on this in the chapter on cartridges.

PROGRAM PROTECTION FOR THE C-64 Page 14

BASIC PROTECTION

Most BASIC programs are protected by a few simple POKEs. In order
for the numbers to be poked into memory the program must be RUN.
Following is a list of the most common locations and their
original values, their function and their protection values.

Memory Original Function Protection
Location Value Affected value
1 55 oper. system 00
43 01 bot of mem. low byte 20
44 08 bot of mem. high byte 09
192 (020] tape interlock
197 value of current key
198 # of char. in buffer
631-641 keyboard buffer
649 10 keyboard buf. size
775 167 eliminate list 200
808 237 eliminate stop 239
808 237 stop restore list clock 225
808 237 stop restore list 230
818 237 eliminate save 32
828-1019 cassette buffer

Load the program called TEST #1 from the program disk. Run the

program, then list it. This is a very simple BASIC program, it
does not contain any protection. Then try changing the values at
the locations listed above. First POKE 1,0 press 'RETURN’'. The

computer has just had its complete operating system turned off.
The microprocessor thinks that there is no longer a BASIC
interpreter cor KERNAL. The value can not be restored to its
original value from BASIC. The system has just crashed. To reset
the computer turn the power off and then on again.

To see the effects of the other memory locations, try poking the
other protection values intc their memory locations. First 1load
the TEST #1 program and run it. Then list it to be sure every
thing is all right. Then POKE 808,230 'RETURN"' ., Try to list the
program. You will not be able to get a proper 1listing of the
program any more, The STOP and RESTORE keys will be disabled. The
program will function normally in the run mode. RUN the program
and try to stop it by pressing the RUN/STOP and RESTORE keys.
Many programs written in BASIC will alter the values at location
808 in an effort to prevent you from listing or stopping the
program. After the program has ENDed 1t will be possible to
restore the computer to normal operation. POKE 808, 237 'RETURN'.
Once vou have restored the protection value to its original value
try another. Try all the memory locations that have a protection
value listed. See what effects are caused by changing some values
stored in memory. You can not damage your computer by POKING
values into memory, at the very worst you may have to turn the
computer off to regain control.

PROGRAM PROTECTION FCR THE C-64 Page 15

If you should see a program that pokes values into the memory
locations of the cassette buffer, the program is probably storing
a short machine language routine in the cassette buffer. These
routines normally have nothing to do with program protection.
They are use to speed the BASIC program by doing certain
functions in MACHINE LANGUAGE (ML). Certain functions of vyour
computer may be accomplished hundreds or even thousands of times
faster in ML than in BASIC. To use this ML subroutine, BASIC has
the 8SYS command. The SYS command will turn contreol of the
computer over tce the ML subroutine. When the ML subroutine 1is
done performing its function, the control is returned back to
BASIC.

When numbers are being poked into locations 631-641, many times
the computer i1s getting ready to load another program into
memory. 631-647 is the keyboard buffer, location 198 contains the
number of characters currently contained 1in the buffer. The
proper values must be stored 1in the keyboard buffer and the
number of characters is stored in location 198. BASIC will then
be given the END command and the characters 1in the keyboard
buffer will be printed on the screen. Their function will be
executed by printing the return command as the last character
printed to the screen (CHR$(13)). Load and run the program called
KEYBRD BUFFER, you will see how this works., To find out just what
the program is doing you will need to convert the numbers that
are being poked into the buffer to their ASCII equivalents (see
the memory map section for ASCII eguivalents).

Another way to protect BASIC programs is through the use of a
character that BRBASIC does not understand. When the BASIC
interpreter comes to this character it will cause a ?SYNTAX
ERROR. We can not have this error occur while the program is
running. It must only appear when the program is listed. Try
entering the following lines:

10 PRINT "THIS IS A TEST OF LINE 10": REM 'RETURN'
20 PRINT "THIS IS A TEST OF LINE 20": REM 'RETURN'
30 PRINT "THLS 1S A TEST OF LINE 30": REM 'RETURN'

RUN the program to be sure it will execute properly. Then after
each REM type the following graphics character: shift L (heold the
shift key while pressing the letter L) 'RETURN', Try running the
program, then list it. You will now get a ?SYNTAX ERROR every
time you list the program. BASIC does not understand the function
of the shift L c¢haracter. When the program is run the REM
statement will protect the character from generating a 7?5YNTAX
ERROR. When the program is LISTed BASIC will try to interpret
this character., It can not, so a ?SYNTAX ERROR is generated. To
remove the graphics character that causes the SYNTAX ERROR, try
listing the program, move the cursor up to the line that contains
the error, then press 'RETURN'. List the program again and the
line will list properly. You will have to move the cursor up to
EACH line that contains an error and press 'RETURN'. Do this at
every line that contains the graphics character and the program
will list properly.

PROGRAM PROTECTION FOR THE C-64 Page 16

Another way to keep people from listing your complete program is
through the use of muitiple delete characters inserted
immediately after the statement. This line will 1list properly
then be immediately deleted. This will happen so fast that vyou
will probably not be able to notice it happening. If this
technique is used in a large program, a few important lines may
be deleted. This technique is not hard to do, but it can be a
little tricky to perform the first time. Follow the instructions
to the letter. Press 'RETURN' only when instructed to do so. Type
in the following line:

10 POKE 53281,0:PRINT" "

DON'T press the 'RETURN' key just vyet. Delete the last quotes
sign (") with the 'DEL' key., lHold the 'SHIFT' key down, hold the
'DEL' key down for 3 seconds. The cursor should not move, but it
should blink very fast {(if the cursor moves, stop what you are
doing and start over from scratch). Release both keys and press
the 'DEL' key 30 times. The line should not be deleted, the
reversed 'T' symbol should be printed. Now press 'RETURN'. Try to
list the line. TIf you loock very carefully you will Jjust barely
see the line flash on the screen and then be deleted. Run the
program and you will see that the line does in fact still exist.
This line will function properly, but it will be difficult to
list. Try placing a 'hidden' line in the middle of a large
listing and the line will become virtualy invisible. To remove a
'hidden' line from a program requires yvou to delete the entire
line, then re-type the line without the deletes. If you run into
a program that you suspect of having this type of line in it, try
listing the program to your printer to find the 'hidden' line.

There are many different ways to make BASIC lines unlistable.
Modification of the guotes mode can usually be found by listing
the program to the printer. Then you can delete the line that
contains the modified code. Re-type the line minus the special
characters. That's all there is to it.

Moving the start of BASIC pointers is a method of ‘'hiding' a
BASIC program. The start of BASIC pointers a4are contained at
locations 43 and 44. The start of BASIC address may be calculated
{in decimal) by the following line:

10 PRINT PEEK (43) + 256 * PEEK (44)

If the pointers have not been moved the value returned after
running line 10 will be 2049. This means that the start of BASIC
is at the memory location 2049. BASIC RAM memory actually starts
at 2048, but the first byte of BASIC memory must contain a 00.
Programs written in BASIC must have every line preceded by a 00,
50 the actual BASIC program will start at 2049. The start of
BASIC memory can be moved higher with the following program:

e —— e —————

PROGRAM PROTECTION FOR THE C-64 Page 17

5 X = 4096: REM NEW START OF BASIC

10 N = X - 1: REM NEW START OF BASIC - 1
20 H = INT (X / 256): REM HIGH BYTE
30 L = X - H: REM LOW BYTE

40 POKE N,0: POKE 43,L: POKE 44,H: CLR: NEW

This program is contained on the disk under the name of MOVE
BASIC. Very few programs use this type of program protection.
Occasionally a BASIC program will be relocated higher in memory.
The memory below the BASIC program will contain a short ML
routine. It will appear to the novice that the program has been
written entirely in ML. A 1little later I will <cover how to
identify these programs. This will be covered in the c¢hapter on
ADVANCED PROTECTION SCHEMES.

Many programs will contain errors on the disk. These errors have
been intentionally placed on the disk. When the program runs it
will check the disk to see if the error is present. If the error
is present the program will execute normally. If the error is not
present, the program will crash. This way if some one makes a
copy of the original disk and does not have the capibilities of
putting the error on the copy disk, the program will not run, The
following routine is typical of a error checking routine written
in BASIC:

10 OPEN15,8,15,"I0:": REM OPEN ERROR CHANNEL AND INITIALIZE
DRIVE

20 OPEN5,8,5,"#": REM OPEN CHANNEL FOR DATA. IT IS NECESSARY TO
OPEN BOTH CHANNELS TOQ THE DRIVE.

30 PRINT#15,"B-R";5:0;1:3: REM PERFORM BLOCK READ; USE CHANNEL
5; DRIVE 0; TRACK 1; SECTOR 3;: DISK DRIVE WILL TRY TOQ READ A
BLOCK OF INFPORMATION FROM THE DISK

40 INPUTE15,A%$,B$,C$,D$: REM READ THE DISK DRIVE ERROR CHANNEL

50 IF VAL (A3%) = 21 THEN 100: REM CHECKS TGO SEE IF ERROR TYPE
IS A #21. 1IF IT 13 GOTO LINE 100 (START OF PROGRAM)

60 SYS 64738: REM SYS 64738 WILL CAUSE THE PROGRAM TO CRASH AND
THE COMPUTER TO RESET ITSELEF.

70 REM THE ORIGINAL DISK HAD AN ERROR #21 AT TRACK 1, SECTCR 3.

80 REM IF THE COPY DISK DOES NOT HAVE THIS ERROR THEN THE
PROGRAM WITT, CRASH

390 REM IF THE COPY DISK HAS THE SAME ERROR AS THE ORIGINAL THE
PROGRAM WILL RUN

100 CLOSES: CLOSE1S5 : REM CLOSE CHANNELS TO DISK DRIVE AND
BEGIN NORMAL PROGRAM

PROGRAM PROTECTION FOR THE C-64 Page 18

This is a typical listing of how a program will check to see if
the disk has the proper error in the proper place. The error may
be on any track or sector on the disk. Line 30 may be changed to
the desired track and sector. The error type may be any error
which is capable of being placed on the disk. The desired error
type may be set in line 50. The most common error types are 20,
21, 22, 23, 27 and 29. Very few programs will have their error
checking routine accessible to you. It may require a little work
to find the routine. Some will try to hide the error <checking
routine with the methods used above. Others may use more
sophisticated methods that I will cover in later chapters.

Most programs will use a variation of the error checking routine
in one form or another. It does not matter 1if the program is
written in BASIC or ML the same general format must be follaowed
in order to read an error. This 1s a very important concept, be
sure that you thoroughly understand it before proceeding. In the
fellowing chapters, I will refer back to the error checking
routine many different times.

If the preceding example was part of an actual program, there are
a few methods that can be used to defeat the error checking
routine. The first thing to do is to make a copy of the disk with
BACKUP 228. This will give you a copy of the original disk
without any errors. Then load in the program that contains the
error checking routine. Now let's look at the possible ways to
defeat the error checking. Any one of the methods listed below
will work equally well.

1). Change line 10 to: 10 GOTO 100: REM THIS WILL BYPASS THE
ERROR CHECK ROUTINE COMPLETELY

2). Change line 50 to: 50 GOTOC 100: REM THIS WILL CHECK FOR AN
ERROR. IT DOES NOT MATTER IF THE ERROR 1S PRESENT OR NOT, THE
MAIN PROGRAM WILL BE EXECUTED

3). Change line 50 to: 50 IF A% <> 21 THEN 100: REM 1¥ THE
ERROR IS5 NOT PRESENT THE PROGRAM WILL EXECUTE. THIS IS THE METHOD
I PREFER TO USE

4). Delete line 60 completely: REM NOW THE PROGRAM WILL 'FALL
THRU' TO LINE 100 AND WILL EXECUTE PROPERLY

Any of the above methods will work. It does not matter which line
is changed. The important thing to remember is that the error
checking routine must be disabled in one fashion or another. It
will be up for you to decide on how to modify the program. If you
can not decide on how to modify the program, just try any method
that seems to make sense. Keep track of what you did, and what
effects it had on the program. If the first item that you changed
does not give the desired results, then change the code back to
the original version. Try something else, don't be afraid to
experiment.

PROGRAM PROTECTION FOR THE C-64 Page 19

DISK DRIVE OVERVIEW

The 1541 disk drive will format the new disk to be read and write
compatible with may other Commodore (R} disk drives. The proper
syntax to format a disk is:

10 OPEN 15,8,15,"1@2:" 'RETURN'
20 PRINT#15,"N@:name of disk,ID" 'RETURN"
30 CLOSE 15 'RETURN'

Whenever you open a channel to the disk drive be sure to
initialize the drive ("I0:'"). This will reset the disk drive to
the same condition as if you just turned the power on. To achieve
a properly formatted disk a loud c¢licking sound should be heard
from the drive during the first few seconds of the formatting
procedure.

In order to properly communicate we first need to understand the
meaning of a few technical terms. Following is a list of terms
that I will use in discussing the disk drive.

DEFINITIONS: Refer to pages 54 thru 58 of your Disk Users Manual:

BAM Block Allocation Map - how many blocks of information
have been used and how many are available for use.

Block The area on a disk where information is stored. There
are 683 Blocks, each capable of holding 256 bytes of information.
The term block refers to a specific Track and Sector on the disk.
A block is where the program data is stored

Byte A numeric method of storing information in the
computer's memory or on the disk. One byte is required to store
each letter or number in the computer's memory. All letters,

numbers, graphics, symbels and punctuation marks are stored in
the computers' memory as a number. The numerical eguivalents are
contained in a chart provided in the section on memory maps. A
byte must be two digits {(i.e. %04, FF, 00, 82).

Directory A listing of each file {program, sequential, user
Telative) contained on the disk. The directory also contains the
location of the track and sector on which the program starts and
how long the programs is.

Dos Disk Operating System. This controls the internal
workings of the disk drive. This will include the microprocessor
and associlated memory contained in the disk drive.

File. A file is a group of blocks of information.
Tnformation may be stored on a disk in Program files, Sequential
files, User files, Relative files, Random files or the Directory
file, The disk files are similar to the files contained in a file
cabinet, they contain any information that you wish to store in
them.

PROGRAM PROTECTION FOR THE C-64 Page 20

Format Most small computers use the same floppy disks. The
only difference between the disks is the way that the disk drive
stores the information on the disk. The method that each disk
drive uses to store its information is called the format. When a
disk is formatted the disk 1is completely erased, a new I.D.
number is placed on each sector and the disk is re-named.

Header The header is the part of a sector that contains the
disk I.D., checksum, sync marks and other special information
that the disk drive needs. The header and the block make-up one
sector.

Hex Hexidecimal. This is a numbering system based upon the
Tumber 16. This system uses 16 different digits, whereas the
decimal system uses 10. Hex 1s a convenient numbering system to
work in when you are using the computer.

RAM Random Access Memory: This 1is the part of vyour
computer's memory that may be changed to suit a particular need
(Games, Word Processing, etc.). Ram will contain the BASIC
program or the ML instructions to perform specific tasks.

ROM Read Only Memory: This is the part of vyour computers
memory that is a permanent part of the computer. ROM cannot be
changed, modified or erased. The ROM in your computer allows vyou
to turn on the computer and begin typing, it alsc controls most
of the internal functions of the computer. ROM may be thought of
as the computer's brains.

Sector A subdivision of a track. Each track is divided into
many smaller parts, each part is referred to as a sector. The
sector will contain the header and the block. It is where the
disk drive will store the information. The sector will also
contain the I.D. number of the disk, error checks {checksum),
sync marks and its special identification numbers. The number of
sectors per track varies wilth the size of the track. Outer
tracks, 1 thru 17, have 21 sectors, tracks 18 thru 24 have 19
sectors, tracks 25 thru 30 have 18 sectors and tracks 31 thru 35
have 17 gectors.

Track A concentric ring {circle) used for storing
information on the disk. There are 35 tracks on the 1541 format.
Track 1 is the outer-most, track 18 contains the BAM and
directory and track 35 is the innermost,

In the following pages we will take an in-depth loock at the BLOCK
ALLOCATION MAP (BAM), the DIRECTORY and other associated
information that is stored on TRACK 18. TRACK 18 is very special
on the 1541 disk drive. One byvte of information can be changed on
this track and this will prevent anyone from ever writing to the
disk again. We can determine how many blocks of information have
been used and which ones. The name and I.D. number of the disk
can be found on this track. The names of all the files that have
been stored on the disk can be found here. How long each file is
and where the file starts may also be found on track 18. Track 18
is very special and time should be taken to understand the
information contained on this track!

PROGRAM PROTECTION FOR THE C-64 Page 21

THR/EDITOR DIGE=8- TRE=18 BLE=C." MODE=H
poipTERS
[I S
)
TR §

56 7 39 aAaRB LD EF
[T ok 3 1 ==
SO 12014100 1{'—3FFFF71F—‘11.‘JFFFF’1F' llﬁF‘FFFlF’
1O ISFFFELFR TISFFFFLE LSFFFFIF 1SFFFFLE
S22 1SFFFFLF L1SFFFFIF 1SFFFFIF LSFFFFLF LoC k /qﬁLOC/-?T/OA/
23OLSFFRFLF 1SFFFFLF 1SEREFLE LSFFFFLE Y

<4 OFDSS71F
A% OLIFFERFFOY
S 1T 7
47 LEAFFFRFOX
TRACK 32

1IFCFFO7 OAEQCTIOT
LIFFFEO7 LEFFFRO7

1ZFFFFQT 12FFFFOX 4 BYTES FoR
BFFFFOS LIFFFRPOL EMCH TRACK

TRACK 3§
LIFFFFOL

-3
1]
L)
]

=L
b
S OOOOOOO0

SETQOOOUNO00

TR/EDITOR DISKE=8- TRE=18 BLE=0- MODE=H

L@ E 4567 BY AR CDEF THIS BYTE SHOGLD
-’Cl..((.ﬁﬁ..ﬁi—'...r“-.i—‘..gg - W VI

S0 /AR . .OF A . . AR . B0
<2 . A A . - AR N . B R .
EV N A T LORf A . B R
4 0 W, C e e . PR A R e
SE . B R . . BB . . B OR . R
S . R R . . BB . R B . R A
B A A e FT fi A . . R,

oL, L DISKk NAMSE

- -
L - . P c e e .
=) . .

i e e . - e . . [

PROGRAM PROTECTION FOR THE C-64 Page 22
Refer to figure #1 for the following explanation:

This is a print out of the information contained on track 18
sector 0. This block contains the BAM. Below is a listing of the
first line of the print out, all numbers are in hexidecimal.
Starting in the upper left hand corner the first byte 1is number
0, not number 1. The last byte is number 255, not the number 256.

LOCATION 00 01 02 03 04 05 06 07 08 09 O0A OB 0C OD OE OF
VALUE 12 01 41 00 15 FPF FF 1F 15 FF FF 1F 15 FF FF 1F

The bytes of information have been specifically arranged to
provide easy identification. Starting at the left, location 00,
we find the hexidecimal number 12, this equals 18 in decimal. The
first number contains the peointer toc the next track of the file,
in this case the next block of information is located on track
18. The second byte (location 01), hexidecimal number 01 equals 1
in decimal, is the pointer to the next sector in the file (sector
1). From the first two bytes in this file we can determine where
the next block of this file is located, track 18, sector 1. These
first two bytes are pointers. The next byte (location 03) is very

important. This is the hexidecimal number 41, decimal 65. The
ASCITI equivalent of this byte is the letter 'A'. This byte must
be an 'A' or an error message will be generated: 73,D0S

MISMATCH,18,00. This byte 1is checked every time a disk 1is
inserted into the drive. If this byte is changed to the letter

'E' (hex 45, decimal 69) the disk will become permanently write
protected. The disk drive will no longer be able to write any
information to the disk. This 'E' fools the disk drive into

believing that the disk was formatted on a disk drive that is not
completely compatible with the 1541. Commodore makes many
different disk drives. Some of these drives are completely read
and write compatible with the 1541. Some drives are read
compatible only, meaning that the information stored on the disk
from one drive will be able to be read by the other drive. The
two disk drives will not be able to write any information to the
disk formatted on the other drive. The only way that the disk can
be written to, is 1f the disk is re-formatted. Formatting will
completely erase all the information from the disk, including the
'E'. The fourth byte of information is hex 00 (decimal 0}, this
byte is unused and will normally be set to 00.

The next 140 bytes contain the Block Allocation Map (BAM). Each
group of four bytes contains the BAM for one track. Below is the
BAM for Track 1 (location 04 - 07):

Location 04 05 06 07
Hex 15 FF P 1F

The hex number 15 equals 21 in decimal. This number contains the
total number of blocks free in this track. The next three bytes
contain a bit map for the track. Bits refer to the individual 1's
and 0's that make up the hex number. Example:

PROGRAM PROTECTION FOR THE C-64 Page 23

Location 04 - 05 - - 06 - - 07 -
Hex 15 F F P P 1 F
Rit map 1111 1111 1111 1111 0001 11131

Track 1 has a total of 21 Sectors available. There is a total of
21 1's contained in the bytes FF FF 1F, If a block of information
is used, the DOS will change the proper 1 to a 0. This is called
allocating a block. The disk drive will do this automatically for
vou when you save a program to the disk.

When a disk 1s first inserted into the drive the BAM will read
into the disk drive contreoller's memory. The BAM will be updated
every time a program is saved or scratched. Once a block has been
allocated the disk drive will not normally write any other
information to the block. The allocated block may be freed up by
'SCRATCHING' the file or by the use of the 'BLOCK-FREE' command.
Track 35 contains a total of 17 sectors, below 1is the BAM for
Track 35.

Hex 1 F r F F 0 1
Bit map 1111 1111 1111 1111 0000 0001
The hex 11 equals 17 in decimal, 17 blocks are free. The 1's and

0's represent the bit map for the track.

Bytes 144 to 161 contain the disk name. The name of the disk must
be 16 bytes long. If the name is not 16 bytes long the disk drive
will automatically fill the unused bytes with shifted spaces
(A0). Shifted spaces are used as fillers only.

Bytes 162 and 163 contain the disk I.D. The I.D. will be placed
in the header of every block and in this location of the BAM.

Byte 164 is a shifted space (AO0).

Bytes 165 and 166 contain the ASCII representation for 2A, which
represents the DOS version and the format type.

Bytes 167 to 170 are shifted spaces (AQ).

Bytes 177 to 255 are nulls (00), These bytes are not normally
used, occasionally ASCII characters may be found in these
locations.

The BAM may be modified in a number of ways. I will «cover the
type of modifications that may be performed to the BAM, starting
at the location 00 of track 18, sector 0. If you would like to
see the effects of the changes, you can modify vyour own disk.
Make the changes to a disk that does not contain any valuable
programs. If you should make a mistake, you don't want to lose
anything valuable. The ideal disk to practice on is a copy of any
disk. That way if you make a mistake nothing 1is lost, all vyou
have to do is make another copy. If you should make a mistake,
don't worry about it. Everyone who has ever worked with the
computer has 'messed up' at least once {sometimes more than
once}. If you have not modified the disk before, this will be

PROGRAM PROTECTION FOR THE C-64 Page 24

good experience. Make one change at a time, then try listing the
directory. Keep a notebook of just what ycu changed, what effects
it had and how you returned the disk to normal. This can save a
lot of time later, especially when you are looking at other
programs that have been modified.

Bytes 0 and 1: These bytes may be changed to point to a different
track and/or sector. If you change these bytes be sure to move
the directory. T have not seen these bytes changed. I don't
recommend that you modify them.

Byte 2: This byte may be changed from the ASCIT 'A' to 'E' to
prevent the disk from ever being written to again. Once this
change has been made the 'E' may not be changed back again. By
changing this byte to certain other values you can make the disk
both read and write incompatible. One note: If vyou change this
byte the disk must be removed from the disk drive to make the
change permanent., The BAM is read into memory when the disk 1is
first inserted into the drive. So, if vou don't remove the disk
after making the change, the drive will still have the 'A' in its
memory. If this byte has been changed toc the 'E' many copy
programs will 'die' while trying to copy the disk. The copy
programs will function normally during the first two passes
(until the 'E' is written on the destination disk), then the
motor of the drive will stop on the next pass. If this happens to
you while making a copy it will be necessary use BACKUP-228 to
copy the disk. Start your copy at track 19, block 0. Finish on
track 35. Then copy track 1, block 0, finish on track 18. This
way the 'E' will not defeat the copy program.

Byte 4: This byte contains the number of blocks free on track 1.
If you change this byte to the hex value of FF, you can fool the
drive into thinking that track 1 has 255 blocks free. Try
changing the first byte of the BAM on each of the tracks and see
how many blocks free you can get. This will only give a false
number of blocks free. Even though the drive can be fooled into
thinking that there are more blocks free than actually exist,
these blocks may not be used. Every fourth byte will start a new
track BAM.

Bytes 5,6&87: The bit map of available blocks. A bit value of 1
indicates that the block is available. A bit value of 0 indicates
the block is allocated. By changing these bytes the disk drive
will not know which blocks have actually been used. These bytes
may be restored teo their proper values by VALIDATING the disk.

Bytes 8 thru 143: same as 4 thru 7 1in four byte groups. Each
group represents the BAM for one track. Bytes 8-11 are for track
2, bytes 12-15 are for track 3, etc.

Bytes 144 thru 161: Contain the disk name and may be changed to
any name desired. Illegal characters may be placed in the name by

modifying these bytes (i.e. * or ?). This 1is the only place the
name will appear on the disk. Special opcodes may also be placed
after the first A0 (i.e. $03 $07). See the section on file names

for more information. Ore of the easiest ways to modify the disk
is by changing the first six bytes of the disk name to the hex

PROGRAM PROTECTION FOR THE C-64 Page 25

values: 14 14 14 00 00 00. The directory will no longer be able
to be listed,

Bytes 162 & 163: Contain the disk I.D. and may be changed to any
characters desired. Illegal characters may be placed in the 1I1.D,
by modifying these bytes. The I.D. will be placed on every sector
on the disk when the disk is formatted. These 1.D. numbers will
not be changed by modifying Track 18, Sector O.

Bytes 165 & 166: Contain the format designation. These bytes may
be changed with no adverse effects on the operation of the disk.
If they are changed to unprintable characters (00 03) it may
cause problems with the directory listing.

Bytes 167-255: Any modification may be made to these bytes with
no adverse affects. This is a gocd place to store messages to
those who are trying to pirate scftware.

The directory begins on Track 18, Sector 1. The directory may
contain up to 144 individual file entries. Each entry will
represent one file. The directory will contain information on the
type of file, where the file begins on the disk, the name of the
file and its 1length. Refer to figure 2 for the following
explanation.

Bytes 0 and 1: The first two bytes of this block contain the
pointers to the track and sector of the next block in the file.
If this is the only block in the directory file, the first bvte
will be 00, the second byte will be FF. If this is not the only
block in the file, the first byte will point to the track, the
second byte will point to the sector.

Bytes 2 thru 31: Contain the information for the file entry #1
Bytes 34 thru 63: Contain the information for the file entry #2
Bytes 66 thru 95: Contain the information for the file entry #3
Bytes 98 thru 127: Contain the information for the file entry #4
Bytes 130 thru 159: Contain the information for the file entry #5
Bytes 162 thru 191: Contain the information for the file entry §6
Bytes 194 thru 223: Contain the information for the file entry #7
Bytes 226 thru 255: Contain the information for the file entry #8
Any bytes not listed are unused. If there are additional blocks
used in the directory file, they will be similar to the first
one. The only change will be the listings for the file entry. The
individual file entries will be similiar to the one below. The

only changes will be those that are specific to the individual
file. The example is from figure 2. All numbers are in hex.

TR/EDITOR DISE=8-

[

“0 12048211
<1 BORBOROE0
SE U011
SN

SE O]
AT I Sl
Sl DOOGET LY
A ST T R TS T T2 TR]

S QOO O,
ST

R S IV IWIR IS S
B A S TS 1T TR TR 1W]

45

SET ORI AU

PROGRAM PROTECTION FOR THE C-64 Page 26

THE=1t

4 o0&) [E]
COS0SE4F

4FSEAES4 494E47
QOO QOUOGICN

LO414D4F B2

AR IBIR IR IS]S)

Gl A ak

BHlt=1- MUDE=H

(ST U S DI R B

SOAFS341 4CA0AVAY

OO FIL£ /

Sa427AE LOoNa44142
IRIRIRISIRINIRIN IR IR RIS IR TN F’ LE 3

44552047 R2AVAVAD F/ L { s}

[RINIRINISININIS NI NI STH FED R S18]

404E444) LPE4EID

DUOOLDLL QUL E00 / /L£ é

47400441 4I454F 5

AL F/L £ 5

[RTRIA)

S44G55400 L4k 4Y4F
GOOOOOOC OO0 700 F’LE‘ 7

40032E4D0 DEAQAORO F / L 8 g

LIOOOIOO0 Q000! 200

TB/EDL VUK D1GkE=E- TRE=18 BlLE=1- MODE=A
oL o2 s 4 5 b6 7 HOY oA I oD e F
. e = o= . F R O oS A [
[~ e e e e [
“ e e s A e U NT 1 N & .
[O A . e e [
4L . . . A MU BT N T P b
e T T PO PO
3w e m . BOON U s . L Zo -
S = e e . o b
L B UDR L E YA LD LU
SN L e e s e e om o
= UL END W R LE
e R e e e e e e
S e e LU RE LY U N1 G
B D I R A . e s . e e . . .
SE . . e . . DL AT I
S e, e s . .
Fté.Z

PROGRAM PROTECTION FOR THE C-64 Page 27
Location 00 01 02 03 04 05 06 07 08 09 0A OB 0C OD OE OF

12 04 82 11 00 50 52 4F 50 4F 53 41 4C A0 AQ AO
AGC A0 A0 A0 A0 00 00 00O 00 QO 00 0C 00 00 32 00

Bytes 0 & 1: The hex 12 equals 18 in decimal. The hex 04 equals 4
in decimal. The next block of the directory file may be found at
track 18, sector 4. It is normal for the disk drive to separate
blocks of a file by 3 blocks.

Byte 2: This contains the information that determines what type
of file is stored on the disk. Remember byte 2 is the first byte
of file entry #1. The first byte of all file entries will
indicate the type of file. Following is a list of the bytes that
would normally be found here and their meanings.

00 = no file or scratched file 82 = program file
80 = no file or scratched file 83 user file
81 = seguential file 84 relative file

Bytes 3 & 4: Contain the track and sector of the first block of
information in the file. Hex 11 = 17 decimal. Hex 00 = 0 decimal.
The first block of data will be found at track 17, sector 0.

Bytes 5 thru 20: Contain the name of the file. The name of the
file must be 16 bytes long. If the file name is not 16 bytes long
the disk drive will automatically fill the unused bytes with
shifted spaces ($A0). The shifted spaces will be used as fillers
only.

Bytes 21 thru 23: Will be used for relative files only. These
byte are not normally used.

Bytes 24 thru 27: Unused. Will be nulls {(00)

Bytes 28 & 29: Used for temporarily storing the track and sector
of the replacement file when SAVE with replace is used (SAVE@O:).

Bytes 30 & 31: Contains a running count of the number of blocks
in the file. The number is stored low byte (30), high byte (31).
Location 30 contains the hex value 32, this is 50 in decimal.
Location 31 contains 00. The file is 50 blocks long.

The following file entries will have the same format as the
first. Just apply the same rules to the rest of the file entries
to determine the necessary information.

The DIRectory may be modified in a number of ways. Most of the
ways that the DIRectory can be modified are contained below.
Following each modificaticon there is a 'fix' listed. Try each of
the following modifications and see what happens when something
is changed.

Byte 0 & 1: These locations contain the pointers to the next
track and sector of the file. If this is the last block of the
directory file the bytes will contain the hex values 00 FF. If
it is not the last block cof the file, you will need to locate the

PROGRAM PROTECTION FOR THE C-64 Page 28

last block in the file, Change the first two bytes of the last
block in the directeory file to the hex values: 12 01 (decimal 18
01}. This will point the directory file back to the first block
in the directory file. You will have made a continuous loop, the
directory will continue to search for the pointers that tell the
disk drive that it has found the last block of the file. Instead
it will find pointers to the first block of the file: track 18,
sector 1. The disk drive will search forever for the end of file
marker, but it will not find it. Programs will still locad and run
properly, but you will not be able to 1list the directory. To
correct this condition you only have to find the last block in
the file and reset the pointers to hex values 00 F¥F. The last
block in the directory file should always have the pointers 00
FF.

Byte 2: This byte should not be modified. Sometimes programmers
will put bogus (fake) programs on the disk. These programs have
no value, they are there only to confuse the software pirates. Do
not change this byte unless you are trying to confuse someone or
you are trying to delete a file from the disk.

Byte 3 & 4: These are the pointers for the starting block of the
file. Do not modify these pointers. The only time they will be
medified is when a bogus program has been placed on the disk.
These bogus programs will be placed on the disk to prevent
pirates from copying the files. The pointers may ke changed to
put the disk drive in an endless loop. Bogus programs may be
deleted from a disk by c¢hanging byte 2 to 00. This will 'SCRATCH'
the file from the disk,

Bytes 5 thru 20: This will contain the name of the file. The name
can be any character(s). Many times the name will be set to a
character that BASIC will not easily accept as a valid name. The
name may also be set to a non-printable character. This can be
CHR$(13), CHR${05), CHR$%{(03), etc. BASIC will accept these names,
but it is not something the beginner will know how to do. ML
programs can easily use any name. This type o0f protection will
discourage only the novice. Most of the commercial file copy
programs will be able to copy any and all files from the disk.

A more advanced type of protection would be to modify the first
few bytes that follow the name of the file. These are the bytes
after the first shifted space ($A0). By inserting characters
here, you can foil most any type of file copy program. Using the
hex values of 03 05 90 93, immediately following the first
shifted space ($A0), will give the best of file copy programs
fits. Combine this with names that will not print out to the
screen and you can keep most people from file copying vyour
progams. Example:

PROGRAM PROTECTION FOR THE C-64 Page 29

Location 00 01 02 03 04 05 06 07 08 09 0A OB O0OC OD OE OF
ORIGINAL:
12 04 82 11 00 OD 03 A0 A0 A0 A0 A0 AO AO AOQ AQ
AG A0 A0 AD AOQ 00 0O 00 00 Q0 00 00 00 00 32 00

MODIFIED:
10 04 82 11 00 0D 03 A0 03 05 90 93 A0 A0 AQ AQ
A0 A0 AO AO AQ 00 00 0O 00 00 00 00 GO 00 32 00

To correct the types of protection listed here regquires that the
modified bytes be returned to their normal values ($A0).

The names of these files may not be changed unless the boot
programs, which call up these files, have the files names changed
from within the boot programs. This will normally require some
knowledge of ML and a ML monitor to accomplish. Remember that the
name of the program will start at byte 4 and continue to the
first shifted space, anything after the first shifted space will
be bogus.

Some programmers will place delete characters immediately
following the first shifted space. This will allow the name to be
listed and then deleted. This can happen so fast that the average
person will not be able to see the characters. Again, to correct
this type of protection just change the modified bytes to shifted
spaces.

The rest of the directory is just a repetition for each file. You
will only have to adjust the locations for the appropriate file
being examined. Directory modifications are not hard toc perform,
but they can give the novice programmer fits.

PROGRAM PROTECTION FOR THE C-64 Page 30

Below is a list of commands that may be sent to the disk drive
to perform various functions

B-R Block read command
B-W Block write command
B-P Buffer pointer command

U1l (UA) User read of data block

U2 (UB) User write of data block

B-E Block execute
M-R Memory read
M-E Memory execute
M-W Memory write

Any time that you see these commands be on the look out for a
program protection scheme.

PROGRAM PROTECTICON FOR THE C-64 Page 31

BAD BLOCKS

BAD BLOCKS that must be read in order for the program to run, are
the worst form of protection that a programmer can use!

A disk formatted on the 15471 disk drive will contain 683 blocks.
During formatting the drive will completely erase the disk, place
sync marks, I,D. numbers, track and sector numbers, checksums and
other information needed for the proper operation of the disk
drive. All of this information will be contained in the header of
the sector. The disk drive will also allocate the space necessary
to store the files (blocks). All the information needs to be
present for the disk drive to be able to read the block of
information from the disk, If all this information is present and
the numbers contained in the header have the proper wvalues the
block is referred to as a good block.

Many programmers are able to modify or delete some of the
information contained in the header. This will generate an error
when the disk drive tries to read the modified block (bad block).
You will see the red light flash on and off, the disk drive will
try to find the informaticon that has been modified or deleted
from the sector. In an effort to extract the proper information
from the block the disk drive will move the read/write head from
the desired track to another track, and back again, After the
drive has failed to read the information from the bad block, the
read/write head will mechanically reset itself. This will cause a
loud clicking noise, similar to the noise heard when formatting a
disk. The noise is a result of the cam that moves the read/write
head pounding against its end stop. This can be very harmful to
the disk drive, many disk drives have been pounded out of
alignment while trying to read these bad blocks.

If these BAD BLOCKXS can be so harmful, why do so many programs
have them?? Until early 1984 there was no easy way for the user
of the 1541 disk drive to duplicate these bad blocks. This seemed
to be the 1ideal way to protect software from unauthorized
duplication. The user of the disk might be able to copy the
information from the original disk, but he had no sure way of
duplicating the bad block on the copy. The software manufacturers
had a fool proof protection scheme, or so they thought, Before
the program would run, the bad block would have to be read by the
disk drive. The program would then check the error channel of the
disk drive and read the error. If the disk had an error of the
proper type and at the proper location the program would run. If
the disk did not contain the error the program would ‘crash' or
go into an endless loop. This seemed to be a very easy way to
prevent pirates from copying the program. This also prevented the
owner of the program from making an archival copy of the disk.

PROGRAM PROTECTION FOR THE C-64 Page 32
The bad blocks normally do not contain any useful information,
They are usually placed on the disk as a means of protecting the
disk from software pirates.
Below is a BASIC listing of how to read a block from the disk
drive. This should be familiar to you.
0 REM LINES 10 THRU 90 CONTAIN THE ERROR CHECK ROUTINE
10 OPEN 15,8,15,"1I0:" :REM OPEN ERROR CHANNEL
20 OPEN 5,8,5,"#" :REM OPEN DATA CHANNEL, USE ANY BUFFER (#)
30 TR = 1: SE = 0 :REM USE TRACK 1 SECTOR O

40 PRINTH#15,"B-R";5;0;TR;SE :REM PERFORM BLOCK READ, CHANNEL 5,
DRIVE 0, TRACK, SECTOR

50 INPUT#15,A%,B%$,C$,D$:REM READ ERROR CHANNEL FOR ERROR, IF
NO ERROR THEN 00,0K,00,00 WILL BE INPUT

60 REM Ir ERROR DETECTED THEN ERROR NUMBER , ERROR
TYPE, TRACK,SECTOR WILIL BE INPUT

70 IF VAL(A$) <> 00 THEN 100 :REM IF ERROR EXISTS THEN GOTO
LINE 100 TO START THE PROGRAM

80 PRINT " THIS DISK IS A COPY" :REM NOTICE TO PIRATES

90 3YS 64738 :REM PERFORM WARM RESTART AND RESET COMPUTER.

100 REM START OF MAIN PROGRAM

Most programs that have their error checking routine written in
BASIC will have similar syntax to that used above. It is

necessary to open the error channel and a data channel to the
disk drive prior to performing the block read command. Some

programmers will substitute "ui1', "vua", "vuz", "uB" or "B-W"
commands for the "B-R" command. All of these commands will
perform either a block read or a block write, see your disk drive
manual for further information on these c¢ommands. It 1is not

important which command is sent to the disk drive, What is
important is that the block of information that they are checking
for will return the proper error message,

Notice that the program in the chapter on BASIC PROTECTION
SCHEMES contained an error checking routine that checked for a
particular error (50 IF VAL(A$) = 21 THEN 100). Whereas the above
program checks for any error (50 IF VAL(A$) <> 00 THEN 100}. Some
programs will check for a specific errors others will <check for
any error. Either method will provide similiar results.

PROGRAM PROTECTION FOR THE C-64 Page 33

The program disk contains a short program titled ERROR CHECK, Run
this program to see how the disk drive will respond to a good
block of information (track 2, sector 0) and how it will respond
to a bad block (track 1, sector 0). The actual error message will
be displayved on the screen after the disk drive has read the
block from the disk.

Bad blocks may also be read from a ML program. The general syntax
will be the same as the BASIC version, only the ML routine will
rely on KERNAL subroutines located at $FF81 to $FFF5. These are
the subroutines that will open channels, print the block read
command to the disk drive and input characters from the error
channel. BASIC instructions will perform the same function as the
ML routine. A table has been prepared which will show the
similarities between BASIC and ML.

BASIC COMMAND ML, AND KERNAL CALLS
OPLN $FFBA SEEBD SFECO
PRINT# $EFFD2 $FFA8
"U1:550:1;0" Ul: 5 0 01 Q0
INPUT# $FFCF $FFAS $FFE4
IF THEN cMp BEQ
SYS 64738 JSR $FCE2
CLOSE $FFC3 $FFCC $FFE?

If vou were loocking at a program written in BASIC you would hunt
for the commands on the left to find the error checking routines.
If you are looking for the ML program protection routines vyou
should hunt for the subroutines on the right. If vyou don't
understand the ML at this point, don't worry about it. This 1is
just an introduction on what to look for in ML. More on program
protection in ML in later chapters.

Keep in mind that any time the disk drive reads a bad block the
read/write mechanism will be pounded against the end stop. This
will result in a loud noise from the disk drive. The pounding can
(will) cause the drive to become mis-aligned, preventing further
use of the disk drive.

Bad blocks that must be read in order for the program to run, are
the worst form of protection that a programmer can use.

PROGRAM PROTECTION FOR THE C-64 Page 34

PRG, SEQ AND USER FILES

A file is just a method of storing information on a disk. Most
copy protected programs will use either PROGRAM, SEQUENTIAL or
USER files to store the information on the disk.

A PROGRAM file, as the name suggests, is the normal method of
storing a program on the disk. When you save a BASIC program to
the disk drive it is stored in a program file. When you save a ML
progam to the disk drive it is stored 1in a program file. The
program file will ccontain pointers to link the blocks of the file
together. It will also contain information so that the file may
be relocated to the same area of memory that it came from and it
will contain the actual program. Figure 3 contains the first
block of information from a program file. Below is the first line
from the file:

Location 00 01 02 ¢3 04 05 06 07 08 09 0A 0B 0C 0D OE OF
Hex 11 04 01 g8 15 08 00 Q0 44 4E B2 38 3A 8F 20 44

Bytes 0 & 1: Pointers to the next track and sector of the file
{hex 11 = decimal 17, hex 04 = decimal 4, track 17 and sector 4).
All program files will have pointers located at this location. If
byte 0 is 00, this will be the last block of the file and byte 1
will contain the number of bytes used in this block. Example: the
first two bytes contain 00 79 , 00 means that this is the last
block of the file and hex 79 = decimal 127, byte 127 is the last
byte of this program file. The 00 is an end of file marker, this
tell the disk drive that this block is the last in the file.

Bytes 2 & 3: These bytes will contain different values depending
on whether this is the first block of the file or one of the
other blocks in the file, If it is the first block of the file it
will contain the location of where, in the computers memory, the
program resgided. If this is one of the subsequent blocks of
information, these locations will contain the program data. It is
important to remember that the first block of the program file
contains the pointers so that the program may be relocated in
memory .

If this is the first block of data in a program file the pointers
will contain the memory location of where the program resided in
memory when it was saved to the disk. The bytes are stored in the
low byte, high byte fashicon. This means that the program resided
at the hex address of 0801, decimal 2049. Notice that these two
bytes are stored in the reverse order of their actuval location.
The 6510 microprocessor chip in your computer stores all memory
locations in this low byte, high byte order. Keep this in mind
when examining hex numbers. The computer can load program files
back intc the same area of memory where the program resided when
they where saved or the computer can load program files into
memory at the start of BASIC. The start of BASIC RAM is at hex
0800 (decimal 2048), but every BASIC program line must be
preceeded by the value 00 for BASIC to work properly. The BASIC
program files must be located immediately above this location.

PROGRAM PROTECTICON FOR THE C-64 Page 35

Hex 0801 is the actual start of where BASIC programs reside 1in
memory. The example in figure 3 1is a BASIC program and will
locate itself at hex 0801 whether the normal load command {(LOAD
“"NAME",8) or the relocate load is used (LOAD "NAME",8,1)., If we
load ML programs with the normal load command (,8) the program
will load at the start of BASIC, hex 0801, If the relocate
command is used (,8,1) the program will be relocated to the same
spot where it resided before it was saved.

Bytes 4 thru 255: If this is the first block of a program file,
byte #4 will contain the first byte of the actual program data.
If this is a subsequent block of a program file it will be a
continuation of the program data. Remember that the last block of
a program file may contain less than 255 bytes of information in
the block. ’

A SEQUENTIAL file is , as the name implies, information that has
been stored on the disk in a sequential manner. These files are
similar to those on cassette. The information stored in
sequential files must be read from the Dbeginning to the end.
Sequential files may not be loaded directly into the computer.
Data must be transfered byte by byte through a buffer. Sequential
files are similar to pregram files in that the first two bytes of
a block contain pointers that point to the next block in the
file. All the rest of the information in the block will be the
data. There will not any pointer that will tell the computer
where to relocate the data in memory. The data contained in the
sequential file must be stored in the computers memory by the
program loading the file.

USER filcs contain information that has been stored on the disk
by the user (programmer}. These files will not contain any
pointers. There will not be any peointers to link the blocks of a
file together. There will not be any pointers to locate the files
in memory.

These files can only be read into the disk drives buffer through
the use of the "U1" or the "UA" commands. The information will
then be read into the computer one byte at a time and stored at a
location in memory specified by the program. This seems to be a
complicated way to store information on the disk. It 1is! Many
programs will be stored on the disk in user files one block at a
time. The programmer can control what part of the program will
resicde on which block of the disk. The programmer can scatter the
program clear across the disk if desired. The only way to load
the data back in to the computer is to know how and where it was
saved to the disk in the first place. This can present a
challenge to software pirates. Either a complete copy of the disk
must be made or the pirate must try to figure how the data was
saved on the disk in the first place.

PROGRAM PROTECTION FOR THE C-64 Page 36

NEXT TRACK
o SECTOR OF F/LE

TR/EDLITUR DISE=8- TRE=17 BL¥E=0./ MODE=H

O 12T 4353 67 B2 aAabB CDIEF

Po/NTER FoR mémoky
agq RELOCRTION 3030/

8

110 41') 1 UBI 15080000 4448 R ZABF:

SO49EGAE PORIIEO0 PR RDEOR
54484953 DO4YSIR0 ST 4T04E

46200448 45204449

34564

PROGRAM STHRTS
A7 Byre 2oY

LOEROOSE
00 IOoALL0Y]

o 0OQEIVEB1lE QoYY
W7BOAD S, 251
FAaOEL Glo4Re20
H2EAOORE OEE SO0
2O414E5S

SFAE 55040

QU iodRr DLUDAABE 2041 04
ZOATEOLE S000040% 4600 P
ZULOGY4E SA455S04 Yogq40041)
A A AELO00 4dnd- Dy 4D415454 45440049

TR/ELITOR DISE=H TRE=17 BLE=0-" MODE=A

w1l @3 435467 BYAR CDEF

B « s a e DN « 8 I D
<1 R IV E # 3 . LD

Y2 T H 1 & 1 5 “ TE ST 4]
L3 F T = D1 Bk &) K1 v g
-4 L. e e " D
SO E VL C [N M E R . "
L S, [g o8 .2 T 0
-7 5 5202 w1 o, 0 0o 08 52 e
<83 . U0 . I - T % O T 1 O
A N I . i 2. " .
-8 R E S5 AN EOEY
i Fo o N [R W™ '
2

B U - « A F % "1 A F
0 o =S I Lo,
ke . . I N Sk KO E L A
SE K [0 S |V I O VAR R o TS T E D D

PROGRAM PROTECTION FOR THE C-64 Page 37
One can not simply load or save user files, User files may be
loaded into memory thru the use of the following BASIC program.
Notice that this program is similar to the program that checks
the error channel after a block read.

0 REM LCAD USER FILES ONE BLOCK AT A TIME

10 OPEN 15,8,15,"I10:" :REM OPEN ERROR CHANNEL AND INITIALIZE
DRIVE

20 OPEN 5,8,5,"#" :REM OPEN DATA CHANNEL, USE ANY BUFFER

30 INPUT "MEMORY LOCATION ";ME :REM STORE USER DATA STARTING AT
THIS MEMORY LOCATION

40 INPUT "TRACK ";TR :REM WHICH TRACK?

50 INPUT "SECTOR "“;SE :REM WHTICH SECTOR?

60 PRINT#15,"U1";5;0;TR;SE :REM PERFORM USER READ
70 FOR DA = 0 TO 255 :REM 256 BYTES OF DATA

80 GETH#S5,1%: I = ASC {I%$+CHR$(0)): REM GET BYTE FROM DRIVE AND
CONVERT INTO DECIMAL

90 POKE ME,I :REM STORE DATA AT MEMORY LOCATION

100 ME = ME + 1 :REM INCREASE MEMORY LOCATION BY ONE
110 NEXT :REM GET ANOTHER BYTE

120 INPUT " ANOTHER BLOCK ";YN$:REM DO IT AGAIN?
130 IF YN$ = "Y' THEN 40 :REM IF YES GOTC 40

150 CLOSES5:CLOSE15:END

This program will allow you to load user files into memory. 1If
you wish to load user files at hex 0801 (2049 decimal) it will be
necessary to relocate this program higher intoc memory. Use the

program titled MOVE BASIC before loading USER FILES. Some
programs rely only upon hiding the program on the disk in user
files and loading it back in the same manner in which 1t was
saved to disk. Others combine the user files with bad blocks in
order to protect the disk from pirates. As you can see it can be
quite a job to figure which blocks to load and in what order., I
do not recommend that you use this routine to try to 1load a
program that was saved to the disk in user files. This program is
helpful when examining one or two blocks of information from the
disk.

PROGRAM PROTECTION FOR THE C-64 Page 38

COMPILED PROGRAMS

Compiled programs can be the best friend of the programmer who
wishes to protect his program from pirates. A program, once
compiled can be next to impossible to decipher.

BASIC is a high level, interpretive language. This means that
BASIC is easy to use, has easily understandable commands and will
be fairly slow 1in its operation. The computer will only
understand ML, Each and every instruction in BASIC must be
interpreted intc ML. The ML will be executed and the computer
will interpret another command. This is similar to the action of
two people who speak different languages and must use an
interpreter to converse. As you can see this could be quite time
consuming and some of the instructions from one person may not
mean the same thing to the other person. This 1is also true of
BASIC programs and the BASIC interpreter that is used to convert
BASIC instructions into ML. It is slow and sometimes not every
instruction the computer is capable of performing may be
implemented by BASIC.

A BASIC compiler can help to remedy the speed problem of BASIC.
The compiler will convert the BASIC program 1into a pseudo ML.
This is not a true ML, nor is it ASSEMBLY LANGUAGE. it is a
combination of ML and has its own brand of instructions (speed
code). The BASIC program is first written and debugged. It is
important to have a working version completely debugged and
tested before compiling, because the compiled program will not
allow editing. Many times BASIC must be re-written to accommodate
the compiler being used in order to make the program bullet
proof. Then the BASIC program is compiled and the new code is
generated. This code will only slightly resemble the BASIC
program from which it was derived, but it will run any where from
4 to 100 times faster than the BASIC version. Speed is not the
only reason a programmer should consider the use of a compiled
program or routine. Once the program has been compiled the code
is much different from the BASIC that it was derived from. It can
really give software pirates fits when they are trying to figure
Just how and what the routine is doing. Compiled programs can not
do any thing more than a program written in BASIC can. Sometimes
compiled programs do less than BASIC or may ncot duplicate every
function of the BASIC program from which they are derived. This
is one drawback that must be considered when using the compiler.

When should a programmer use a compiled program? whenever a BASIC
program needs added speed or whenever he wishes to confuse a
software pirate. The expert programmer, who will write his
programs in ML, should not rule out the use of compiled
subroutines to confuse the software pirates. I have seen teen age
'kids' that could understand programs written entirely in ML. So
the use of compiled subroutines could add a new measure of
security to the program protection scheme.

PROGRAM PROTECTION FOR THE C-64 Page 39

Trying to decipher the compiled program will be a task even for
an experienced programmer. I have written programs in BASIC and
was not able to follow the logic in the compiled version. There
are three or four good compilers on the market today. Try to get
a hold of one and see what I mean.

The only way to follow the logic of a program once compiled is to
start a table of the code that the compiler uses and try to find
the meaning for each and every instruction. Good luck! Each and
every compiler will use its own set of commands. I have heard of
a program that will decipher the compiled version of a program
and return it to BASIC., Whether or not the program actually
exists and the quality of its work is not known at this time.

Most 'professional' programmers do not use any compiled routines,
1 guess that they feel that a program written in BASIC and then
compiled is not a very macho way to write programs. Very few
programs are written in any form of a compiled language. The
BASIC program from the last chapter is contained on the disk.
Notice how much faster the program works. The program 1is called
USER.WOW.

PROGRAM PROTECTION FOR THE C-64 Page 40

MACHINE LANGUAGE

Some knowledge of machine language (ML) is necessary to
understand the program protection schemes of most programs.

Understanding the ML once written 1s far easier than writing
preograms in ML. One only has to follow the concept of the program
to understand what the program dces. Whereas, writing a program
in ML requires attention to details and a thorough knowledge of
ML.

I am not going to give you a complete course in ML. T will try to
pass along the concepts of ML needed to understand program
protection schemes. If you wish to learn more about ML I would
suggest you borrow a few books from your library on 6502 ML
programming. The 6502 and the 6510 microprocessor have the same
commands and are almost identical in their operation. The only
difference is in the internal registers of the 6510 and this will
not affect the ML programming of the computer. The programmers
reference guide for the C-64 has a section devoted to ML
programming. If you are not familiar with ML, now is the time to
acquaint yourself with it.

ML, just as the name implies, is the machine's (computer's) own
language. ML can be difficult to understand. Fortunately wc have
some tools to help us understand ML. The most important tool is
the ML monitor. The ML monitor will convert (disassemble) ML into
assembly language. Assembly language may be thought of as an
abbreviated English and will allow us to work in the computers
own language. For the rest of the book any time I refer to ML it
will also mean assembly language. Below are some examples o¢f a
disassembly of a ML routine.

Memory Machine Assembly

Address Language Language Comments

.,4000 A9 00 LDA #%00 LOAD THE ACCUMULATOR WITH 0O
.,4002 8D 09 63 STA 36309 STORE THE ACCUMULATOR AT $6309
.,4004 88 DEY DECREMENT THE Y (Y=Y-1)
.,4005 C9 0D CMP #$0D COMPARE TO #30D

.,4007 20 89 43 JSR $4389 JUMP TO SUBROUTINE AT $4389
.,400A 4C 56 32 JMP $3256 JUMP TO $3256

While ML is not hard to understand, the actions may not be that
clear at this time, Why would any one want to load the
accumulator? What is an accumulator? Who cares?

Most ML code 1is wvalid code written to perform a specific
function. Only a small portion of the program 1s used for
protection. It is this small portion of code that vyou will be
interested in finding. Once you have found this code, vyou can
begin to decipher its meaning.

The first thing to get familiar with are the commands that ML
uses. The commands are all three letters which are abbreviations

PROGRAM PROTECTION FOR THE C-64 Page 41

of their function. JMP stands for jump, this is similar to GOTO
in BASIC. BRK stands for break, this is similar to END in BASIC.
JSR stands for jump to subroutine, this is similar to GOSUB 1in
BASIC, RTS stands for return from subroutine, this is similar to
RETURN in BASIC. Most of the rest of the commands will become
familiar to you as you use them. Keep in mind that they are all
abbreviations for the actual command. Let's look at a sample
routine written in ML. This is the disassembled version of the
routine. The first number will represent the location of the
memory address that you are looking at. The next number will
represent the value stored at that memory location. Any other
numbers following will represent the wvalues stored at the
following memory locations. The three letters are the assembly
language instructions that the values represent. The last number,
if present, represents the value or memory location to be acted
upon,

Memory Machine Assembly
Address Language Language COMMENTS
.,8000 A9 0C LDA #3%00 LDA WITH THE HEX VALUE OF OO

.,8002 8D 30 80 STA %8030 STA AT THE LOCATION OF $8030
., 8005 20 CC FF JSR SFFCC JSR AT $FFCC - CLOSE CHANNELS
.,3008 4C 8A 40 JMP $408A JUMP TO $408A

The comments aré only added to help you understand what the ML
commands mean. You will not find the comments when you wuse vyour
ML monitor.

The machine language monitor will be vyour best tool when
examining programs written in machine language. Three monitors
have been included on the disk., All are identical! except for
where they reside in memory. The monitors are public domain
programs and, as such, do not have every function that one c¢ould
ask for, but they are more than adequate for every day use.

When you are looking at ML programs that someone else has
written, the ML monitor is an indispensable tool. Be sure that
you understand all the capabilities of the ML nmonitors before
proceeding to the next chapters. It will be necessary to become
familiar with the SYNTAX of the ML monitor. To load the monitor
type: LOAD "HIMON $YS49152",8,1. After the program has loaded it
will be necessary to type SYS49152 (press RETURN). You should
see the following lines on the screen.

B*
PC SR AC XR YR SP
.;CO03E 32 00 C3 00 F7

This means that you have successfully entered the ML monitor.
PC is the program counter

SR is the status register

AC is the accumulator

XR is the X register

YR is the Y register

SP 1is the stack pointer

Since I am not going to cover how to write machine language

this book,

functions of
similar to 1
them as som
anywhere. It
before you s
understand w
that you do.
necessary to
value in mem
store the ac

What's very

PROGRAM PROTECTION FOR THE C-64

I will not go into lengthy discussions
the registers. The AC, XR and YR are
ntersections in a small town. For now lets

ething that you must go thru prior to
is necessary to go thru one of these

hy you need registers at this time, Jjust
If you wish to store a value in memory it

go thru one of these registers before storing

ory. First load the accumulatcor (1.DA), then

cumulator (STA) at the desired memory location.

important is your ability to use your ML monitor
be familiar with the commands available. Most ML monitors

similar commands, so if you have used other monitors the

will be simi

lar.

Command Function
A Asscmble (write) ML instructions
A XEXKY LDBA #3510
C Compare to two areas of memory
C LLLI, HHHH CCCC
D Disassemble memory
D LLLL (HHHH)
F Fill a section of memory
F LLLL HHHH XX
G Go (run})
G XXXX
H Hunt for specific bytes
H LLLL HHHH XX or H LLLL HHHH *“Xx"
I Interpret memory {(display ASCII symbols}
I LLLL ({HHHR)
L Load program
L "NAME™, 08
M Memory display and modify
M LLLL (HHHH)
R Register display
S Save program
S "NAME'",08,LLLL,HHIH
T Transfer memory from one location to another
T LLLL {IHHH TTTT
X Exit to basic

registers
tore any values in memory. It 1is not important

PROGRAM PROTECTION FOR THE C-64 Page 43

To use the monitor, simply type the letter corresponding to the
command you wish to execute. Then type in the memory location
that you wish to examine or modify. The LLLL refers to the low or
starting address of memory that you wish to examine. The HHHH is
the high or ending address of the block of memory that you wish
to examine. The XX or XXXX will be any value or memory location
you wish to use. The CCCC will be the low or the starting address
of the memory location that you wish to compare the first block
of memory with. No ending address is necessary. The TTTT is the
low or starting address of memory that you wish to transfer the
memory to. No ending address is necessary. The memory locations
contained in parenthesis are optional and may be used if you wish
to examine a block of memory rather than an individual location.
Use the monitors along with a good book on machine language
programming if you are just starting in ML. Practice wusing the
commands until you have mastered all o¢f them. It 1s more
important that you know how to use the ML monitor than it 1is to
understand everything there is to know about ML itsclf.

Try loading in a BASIC program from the ML monitor. Use the
following commands to lcad the program.

I, "TEST BASIC",08 'RETURN’
To examine the BASIC program with ML monitor use the 'I' command.
I 0800 0880 "RETURN'

Use the cursor up and cursor down keys to screll thru memory,
notice how BASIC prcgrams are stored in memory. It 1s very
important that you can recognize programs written in BASIC. Many
good programs are written in BASIC and some have been modified
with a ML monitor to prevent tampering by the user. There are
many tricks that can be done to BASIC programs with a ML monitor.
Most of these tricks are easy to de from ML, whereas they would
require an extensive amount of time to perform from BASIC. These
tricks will be covered in the chapter on ADVANCED PROTECTION
SCHEMES.

Now fill the memory from hex $0800 to $9FFF with the value of 00.
F 0800 9%FF 0O 'RETURN'

Use the 'I' command to examine the memory where the BASIC program
used to reside. The area will be filled with 00s. If vyou want to
find cut where a ML program resides in memory it will be
necessary to first fill the memory with 00s. Then load the
program from the monitor,

L "TEST ML",08

The ML monitor will automatically relocate all programs into the
same area of memory that the program was saved from. You can use
the 'I' command to search thru memory until you find the ML
program. Now examine the memory to find the starting and ending
location of the program. Use the 'I' command to scroll thru
memory while looking for the starting and ending address. The ML

PROGRAM PROTECTION FOR THE C-64 Page 44

code contained in "TEST ML" is not actually a program, it is just
a subroutine from a program I wrote. Once vyou have found the
begining and ending address of the program, you should write them
down for future reference. If this were an actual program that
yvou were goling to modify it would be necessary to have the
starting and ending addresses in order to save the program back
to the disk.

Now that you have found the beginning and end of the program, it
will be necessary to use some of the other functions of the ML
monitor in order to further examine the ML code. Try using the
'H' command to hunt for specific information.

H 2000 2200 'U1 'RETURN'
H 2000 2200 55 31 'RETURN'

The computer will now hunt its memory from hex %2000 to hex $2200
for the hex representation of Ul. When you wish to hunt for ASCII
characters use the ' (single quote) before the character{(s). Tf
you wish to hunt for the hex value(s) use the value(s) separated
by a space. Hex 55 31 is equivalent to 'Ul. Try hunting for other
value({s) or character(s).

The transfer and compare commands may be used in conjunction with
one another. Transferring memory will cause a copy of the memory
to be made, It won't actually transfer the memory. It will
duplicate memory. First transfer the memory from one location to
ancther, then compare the two blocks of memory.

T 2000 2200 3000 'RETURN
C 2000 2200 3000 'RETURN"

If any of the bytes contain different values the location(s) will
be displayed on the screen. Since you have just transferred the
memory to hex $3000 there will not be any differences. Now use
the 'M' command to display and modify memory.

M 2000 2040 'RETURN'

Change a few of the displayed bytes to any other wvalue. Then
press 'RETURN' before moving the cursor from the line. This will
change the value of the bytes in memory. Another comparison can
be made to find any bytes which have been changed.

C 2000 2200 3000

The memory locaticn(s) of the two blocks of memory that contain
different values will be displayed. The use of the transfer and
compare 1s very valuable when inspecting program protection
schemes. Once you have modified the code it will be necessary to
save the ML code back to the disk. When using the save command it
will be necessary to specify the starting address and the ending
address of the memory to be saved, plus one.

s "NAME",08,2000,2201 'RETURN'

PROGRAM PROTECTION FOR THE C-64 Page 45

This will save the code from hex $2000 to hex $2200 on the disk.
The code will be saved in a program file so that it may be
relocaded into the same area of memory from which it was saved.

Once you have loaded a ML preogram into memory it will sometimes
be necessary to execute (run) the program. To do this the ML
monitor has the 'G' command. Once you have located the proper
entry point {(where the proagram will start) the following command
can bhe used.

G 2000 'RETURN"

The will cause the ML program located at hex 32000 to be
executed. The program will continue to execute until the BRK
command is encountered. The BRK command is similiar to END in
BASIC. BRK may be inserted into ML at various points to help vyou
understand the function of the code. The computer will execute
the program, as it was written, until the BRK. At which time the
program will stop and control of the computer will be turned over
to the ML monitor.

If you wish to exit from the ML monitor to BASIC all you have to
type 1s:

X 'RETURN'

PROGRAM PROTECTION FOR THE C-64 Page 46

ADVANCED BASIC PROTECTION

The first part of this chapter will cover programs which have
been written in BASIC. There are many good programs written
entirely in BASIC. Simple, but effective, protection schemes have
been used to protect these programs from the average user. If you
remember from the chapter on BASIC protection schemes, the wuser
could be prevented from using the RUN/STOP and RESTORE keys thru
a simple poke (POKE 808,230). It will now become virtually
impossible to stop the program. When this occurs the easy way to
defeat this is thru the use of a reset button. There are many
commercially made reset buttons on the market for under $10.00,
You can make your own for under a dollar. It will require a
little bit of soldering. Keep in mind that any modifications that
you make to your computer may void the warranty. If you are not
sure of what you are doing take your computer to a qualified
service person.

1) Locate the RS232 port (modem port) on the left rear of vour
computer. The board has 12 contacts on the top and bottom of the
board. Starting from the center ytop side of the beard, the
contacts are numbered from one to twelve. Locate contacts #1 and
#3. Open the case of your computer and drill a small hole in the
side of vyour computers case. Install a momentary contact,
normally open switch in the hole. Solder a wire from one side of
the switch to pin #1. Solder another wire from pin #3 to the
other side of the switch. Close the case of vyour computer and
you're done.

2). I'or those of vyou who don't want to drill a hole in your
computer or if you don't want take a chance on voiding vyour
warranty you may purchase a 24 pin edge card connector from your
local electronics supply house. Solder the momentary contact
switch te the connector, pins #1 and #3. All you have to do is to
is plug the connector into the modem port and your reset Dbutton
is ready.

The reset switch is a very valuable tool. When the C-64 was made
it could not have added $0.20 to the price of the machine to add
the reset button. If your computer is not eguipped with a reset
button at this time, I would recommend that one be installed. You
will need it later.

Contacts #1 and #3 contain the ground and the RESET lines of the
computer. When these two lines are momentarily connected, the
computer will perform a hardware reset. This 1is similiar to
turning the computer off and back on again. The main difference
is that the computer will not erase any memory stored in the
BASIC RAM and above (%080Q0-3FFFF). When the computer is reset the
memory below BASIC ($0000-%07FF) will be reset. BASIC programs
stored in memory will not be erased, only the pointers that tell
the computer where to find the BASIC program will be reset. The
BASIC program still exists, you just can't see it. To restore the
pointers back to where they were before reset requires the use of
short ML program. The program is called RESTORE and can be found

PROGRAM PROTECTION FOR THE C-64 Page 47
on the program disk,

To demonstrate the use of the reset button and the program
RESTORE, first load the "BASIC TEST'" program into memory. Then
POKE 808,230. RUN the program. It is now impossible to stop the
program from running by using the RUN/STOP and RESTORE keys. To
stop the program press the reset button. The screen will shrink
and clear. Next you will see the same messages appear on the
screen as 1if you had just turned the computer on. If you LIST the
program it will not appear. To restore the program in memory all
you have to do is:

LOAD "RESTORLE", 8,1 'RETURN'
5YS525:CLR "RETURN'

Now the program will LIST, RUN and can be SAVEd normally. Some
programmers will go to extraordinary means to protect their BASIC
programs, They will modify the BAM and DIRectory to prevent vyou
from seeing what files are saved on the disk. They will save the
BASIC program in user files scattered all across the disk. They
will use ML boot programs to actually load the BASIC pregram into
memory. Very complicated tricks are sometimes employed to prevent
yvou from getting at the program. Then they don't protect the
actual BASIC program other than using a few pokes. All these
pokes do is prevent vyou from using the RUN/STOP and RESTORE keys.
BASIC programs may be easily identified by LOADing and RUNning
the program., Once it is in memory and running vyou will notice
that the response time to your commands will be sluggish, not the
same response that you would expect from your favorite ML game
programs. These programs may be saved to disk with the use of the
reset button and the "RESTORE" program. Don't be fooled by all
that fancy protection. Most BASIC programs may be broken this
easily!

SUPER LINE NUMBERS is a trick that I have not seen used by many
programmers, It will provide better protection for programs
written in BASIC than most. The only drawback is that the program
must handle GOTO or GOSUB commands in a special manner. This is a
very effective and easy way to write a boot program or the main
program. Super line numbers will give most people fits when they
first encounter them.

The version of BASIC that the C-64 uses will not allow line
numbers larger than 63999. Any time that you try to enter a line
number larger than 63999 a '?SYNTAX ERROR' will be generated and
the line will be ignored. The trick is to enter the program in
BASIC with normal line numbers. Then use the ML monitor to modify
the line numbers of the BASIC program. With the ML monitor, it is
possible to change the BASIC line numbers to any value up to
65535, It is cven possible to change all the line numbers to the
same number. When you combine the changed line numbers with a
graphics character that BASIC will not accept (see BASIC
protection schemes) it will be possible to make the proeogram
virtually unlistable, even before the program is run. To do this
it will be necessary to use the MI, monitor. Load the "BASIC TEST"
program. Add the following command to the end of the first line

PROGRAM PROTECTION FOR THE C-64 Page 48

of the program. :REM shift L (hold the shift key while pressing
the letter L}. This will produce a graphics character similiar to
the letter L. The graphics character will not list from BASIC. It
will create a '?SYNTAX ERROR' when listed. Load and execute the
HIMON, Use the 'M' command to examine the BASIC program.

M 0800 0820 'RETURN’
The following lines will be displavyed.

:08C0 Q0 13 08 0OA 00 99 22 4C
:0808 49 4E 45 20 31 30 22 32
;0810 8F CC 00 22 08 14 00 99
10818 22 4C 49 4R 45 20 32 30
:0820 22 00 00 00 00 GO 0C 0O

The value contained at 0800 is 00. BASIC 1line numbers must be
preceded by the value Q0.

Locations $0801 and $0802 c¢ontain the pointers that tell BASIC
where the next line begins. The pointers are stored in the
familiar low byte, high byte format that is necessary for the
6510 microprocessor. Note that the pointers do not point to the
00 immediately preceding the BASIC line, they actually point to
the pointers of the next line (location %0813 in the example).
All BASIC lines will contain pointers to the location of the next
line.

Location $0803 and %0804 contain the line number of the first
line of the BASIC program. Again low byte, high byte (line 10,
hex 000A). All BASIC lines must have a line number. The line
number can be found immediately after the pointers of all DBASIC
lines. BASTC will store its program lines in ascending order. 1If
we wanted to change the line number to a different wvalue, these
are the two bytes to change. If these two bytes are changed to
FF FF, the first line number will now be 65535 when the program
is LISTed. Change the line numbers to FF FF, then press 'RETURN'
before leaving the line.

10800 00 13 08 FF FF 99 22 4C
: 0808 49 4E 45 20 31 30 22 32
10810 8F CC 00 22 08 FF FF 99
10818 22 4C 49 4E 45 20 32 30
10820 22 00 00 GO0 00 00 00 0O

Then use the 'X' command to exit to BASIC, 1if you wish to
re-enter the ML monitor at a later time type SYS 49152 'RETURN'.
The program will run properly, but the lines may no longer be
deleted or edited. The program will not list properly because of
the 'shift L' inserted after the first line. A '2?SYNTAX ERROR'
will be generated when the program 1s 1listed. The super line
number is used to prevent the line from being deleted or edited
from BASIC. The 'shift L' character did not have to be added to
make the super line work. It was added only to make the program
unlistable. Try using super line numbers on a program that does
not contain the 'shift L' character. All of the line numbers may

PROGRAM PROTECTION FOR THE C-64 Page 49
be set to any number desired.

BASIC does not leook at line numbers while the program is running,
unless the GOTO or GOSUB commands are used. If a GOTO or GOSUB
command is issued BASIC will search the line numbers for the
proper value, starting with the first line. BASIC stores 1its line
numbers in ascending order. When BASIC reads the number of 65535
it gets fooled into thinking that this must be the last 1line
number and quits searching. Hence, no GOTO or GOSUB commands may
be used when the first line number has been changed to these
super line numbers.

I1f, instead, the first line of the program contains the 1line
number 10 and the statement GOTO 63999, all of the subroutines
can be stored with line numbers between 10 and 63998. The program
will function just fine, all the GOTO and GOSUB commands will
work normally. Keep the main body of the program at line 63999
and above, keep all GOTOs and GOSUBs at l1ine 63998 and below. For
an example of this, see the program called SUPER LINES. All of
the lines above 64000 have the same line number, yet the computer
knows where to RETURN to after the GOSUB command has been
executed. BASIC keeps track of the actual address of where the
GOSUB is lccated in memory, nct the line number that contains the
GOSUB. So when the 'RETURN' is found the program will return to
the same address it came from, not payving any attention to the
line number. BASIC only looks for the line number when searching
for the line specified by the GOSUB or GOTO.

To correct a program that uses these super line numbers, you only
have to use the ML monitor to assign line numbers corresponding
to the proper ascending order. Line numbers of all lines may be
changed by this technique and they may be changed to any value
desired between 0 and 65535, Numbers may be repeated or a
descending order may be used.

Locaticons $0805 thru $0811 in the preceding example contain the
BASIC program line. All BASIC commands are tokenized or stored as
single byte that the computer will interpret. This 1is done to
conserve memory. All of the rest of the BASIC lines are stored in
the same fashion. A 00 will precede the start of a BASIC line,
then the pointers to the next 1line, the line number and the
actual program line itself, The end of a BASIC program will
contain three zerc's (00 00 00) and the pointers of the last line
will point to the middle 0C. These three 00 bytes will be found
at the end of all BASIC programs and they also mark the start of
where BASIC stores its variables.

Line numbers are not the only item that may be changed to make
the BASIC program appear to be different than it performs. The
pointers that point to the next line may also be modified. For
instance, the pointers that point to the second line may be
changed to point to any other line. The pointers of any line may
be changed to point to any other line or to the end of the
program. If the pointers are changed to point to the end of the
program, the only line that will list is the first line, but the
program will execute normally. These pointers are only used when
I.LISTing the program or searching for GOSUBs or GOTOs. Just as 1in

PROGRAM PROTECTION FOR THE C-64 Page 50

super line numbers it will be necessary to place any subroutines
at lower line numbers than where the pointers have been modified.
Load the program called MOD POINTERS. This program has already
been modified. See if you can return it to normal using the ML
monitor to reset the pointers. Remember that the first 1ine
should point to the second line, the second to the third, etc.

Programs written in BASIC can be protected in a number of wavys.
It is important that you can identify programs written in BASIC
and how to fix these protection schemes. Rarely does any BASIC
program use more than one of these protection methods and most
don't get very sophisticated. Be sure that you can identify
programs written in BASIC by using the 'I' command of the ML
monitor. It is necessary to know when the pointers for the start
of BASIC have been moved higher in memory and a short ML
subroutine is inserted below the new start of BASIC. A sample of
this is contained on the disk under the name of "ML AND BASIC".
LOAD and RUN this program so that you know what the program does.
Then try using the ML monitor and the 'I' command (or the 'M'
command)} to find the start of the BASIC program. Try also to
detect and correct any other tricks used on this program. When
you are done (or have given up) load the program called "ML AND
BASIC #2". This will give you some hints as to what to look for
in the first program.

When you are looking at BASIC programs keep in mind that some
contain absolutely no protection schemes at all. Most contain
only one or two small tricks. Very few will get into the
sophisticated protection schemes. Just be aware that they do
exist and you will probably see more of them in the future.
Program protection for most programmers is an afterthought. Many
programmers spend hundreds or thousands of hours writing their
programs, then spend only one or two hours protecting them.
another common occurrence is to find all the program protection
at one location. Most programs are guite easy to break once vyou
know where to look and what you are looking at.

PROGRAM PROTECTION FOR THE C-64 Page 51

ML PROTECTION

Hopefully you have mastered the use of the ML monitor and we can
proceed to programs protected in ML. Now that we are going to be
working in ML, I will no longer be giving any values in decimal.
From here on out it will all be in hex.

ML is where the real meat of the program protection schemes
reside., We can now look at how the more 'professional’
programmers protect their software. I use the word 'professional'
with some reservation. Most of these so called professionals use
bad blocks, which must be read by the program before it will run.
I am dead set against using this technique to protect software.
It takes too high of a toll on the disk drive. When the drive
tries to read a bad block the read/write head is literally beat
to death. Unfortunately, too many programmers prefer to use this
method of program protection.

The only good thing about this type of protection is that it is
relatively easy to spot. Once you have spotted the protection
routine, it will be necessary to obtain a disassembly of the ML
code in the immediate area. As T stated earlier most programmers
prefer to place all of their protection schemes in one small area
of the program (usually at the begining or end). This makes
things easier for them, and for us. It really is nice that almost
all of the programs on the market today place all of their
program protection in one little area. This sure makes it easy to
fix the program so that the disk drive dces not get beat to death
every time the program loads.

First thing to do is get a copy of the program on a disk that
does not contain any errors. The best way to do this 1is te use
"BACKUP 228". This is a program that will enable you to make a
copy of any disk, minus the bad blocks. BACKUP 228 is not fast,
it takes almost 30 minutes to make a copy of the complete disk.
What it does do is make an accurate copy of any data contained on
the disk. 1 always use BACKUP 228 for the first copy of any disk.
It works. The complete instructions are contained in the program,
just follow the prompts. It is important that you do not change
any code on the original disk. Keep the original program intact
and do not perform any modifications on it. Make a copy of the
disk and work with it. If you should make a mistake or anything
else happens to the copy disk its no big deal. Remember vyou can
legally make one copy of any program for archival purposes. I
would strongly suggest that you make a copy of every program and
use the copy. Place the original in your archives.

Once you have a copy of the original disk, you can get to work on
eliminating the protecticn schemes. Verify the fact that vou can
list the directory of the disk. If vou can't, now is the time to
fix the directory sc that you can (see chapter on BAM and DIR).
It will be necessary to load each and every program on the disk
to determine which program contains the program protection
scheme. Sometimes it may be necessary to rename the program so
that it may be loaded into memory and examined. Be sure to change

PROGRAM PRQOTECTION FOR THE C-64 Page 52
the name back to its original name before trying the disk.

Some programs contain an auto-boot routine that will take over
control of your computer as soon as it is loaded into memory.
These programs are located from $0100 to $0400. This is below the
screen memory. Try loading these programs from the ML monitor. If
the program taxkes over control of the computer it will be
necessary to reset the computer. One problem with the reset is
that the computer will restore all the memory from $0000 to $0800
when the reset button 1s wused. Any program that previously
resided at this area will now be erased. The RAM memory from
$0800 and up will not be affected by the use of the reset button.
This will make it a little more difficult to examine the program
that resides in the area from $0000 to $0800. In order to examine
the auto-boot programs we must first relocate them in to a higher
area of memory.

First load the ML monitor and execute it to be sure every thing
is functicning properly. Exit to BASIC, then load the auto-boot
program in from BASTC. Do not use the ',8,1' command to load the

program, use tha ',8' after the program name. This will load the
program into the area of memory where BASIC normally resides.
Occasionally the computer will lockup when vou lcad a ML, program
into the arca where BASIC normally resides. If this happens Jjust

reset the computer, the program and the ML monitor will not be
erased from memory. To re-enter the monitor type S8SYS 49152
'RETURN'. You will now be able to disassemble the ML code
starting at 0800. When vou are looking at this code remember that
this is not the normal location for this code to reside. It is
only necessary to relocate this code when the program you are
trying to examine is an auto-boot program and it takes over
control of your computer when loaded from the ML monitor. Other
programs may be examined at their normal location in memory.

Now that you have the program in memory what do vou look for? If
the program is an auto-boot routine it will normally just load
ancther program and perform a JMP (jump) to the proper memory
location to begin executing the next program. There is not quite
encugh memory available to perform the necessary error checks and
have room left over to load another program. Use the 'I' command
to look for the file name of the next program that will be loaded
into memory. The file name may be just one byte or as many as
sixteen. Some programs store the name in ASCII characters, this
sure makes finding the name of the next program casy. Qthers use
names that do not contain any ASCIT characters, this only makes
the name & little harder to find. Below you will see a sample ML
routine. This routine is a boot. It will only load another
program, then JMP (jump}) to the proper location to execute the
program. The comments that appear along side the disassembly are
mine and have been placed there for convenience only.,

PROGRAM PROTECTION FOR THE C-64 Page 53

SUBRLUTINE # 1 ORIGINAL CUDE

L2YUU AY U Lhes #do

L2902 Y0 BD FF JSK %FFRD SET FI1LE NAME (00 = NG NAME)
L2905 A9 uF LDA #3$0F

, Y07 AL ud LLDX #8008

LLY07 AW Tivy

L2P0A GO BA FF JuR SFFBA SET LUGICAL, 151 AND ZNLD ADDR (1%5,8.19)
L2900 20 Co FF OJ5R $FFCO GFEN FILE (15,8,15])

L2100 AY i LDA #3501 1 UHARACTER NAME
EE S DL Wit LUx #$35 FREOM LOCATION
A T R 1LY #%:2Y FLTEY0

W2716 £ BD ort JBR BFFHED Sei FILE NAME (#1
251 AT OS LDA #F05

LoTlb He o ud LDX #8006

L1 RE 1AY

291k Z0 o pa FEOJSR $bFBR SET LUGICHKL, 12T AND IND aADDR (Z,8.32
L2921 20 Cu FFOJSK %FFCO UFEN FILE {5,8.3)
o FE 30K BFELC CLOSE 170 CHANNELS

Lok LDX ##of
L7 Pk JSKR ORFFL® OFERM CHANNEL H0FR OUTFUT (130
[R18} LDY #%00
oo J9 LbR FET08.Y
e BEW $29.59
LT OFF JSR $FFDZ PRINT CHARACTERS 10 LISK DRIVE (Uk: B 0 01 2
INY
ol ENE $297E
i CC kEOJSR ®FFCC CLIOSE 170 CHANNELS
LK LD #$0F

(0 Le FF GJSK &FFCa OFEN CHANNEL FOK INFUT
LF FF JSR SFFLCK INFUT CHARACTER

L2944 O 3L CMF #9722 CME TO #2020 tAasCID 20

CLFRs Dl uf BNE 32952 BRANCH IF NOT EUUAL (TO 332}
L2748 2 OF FF Jok $FFCF INFUT CHARGETER

2G4 E LY IV CME #828 CME 10 $3% (ASLID 9)

I R PN ENE $2952 BRANCH [F NOT Z0UAL (TO %37

yowdE AL g4 YU dMF $Yeas JUMF TO START OF MAIN FROBRAM

LOFES A B2 FCOJME $FCES JUMF TO WARM RESET (CRASH FROGRAM)
P T {ASCIT #)

oo il EUR $21,X (asclil Uy
R o tASCTY)
Zu RS JSRhOBL0.G (RECIL S

RV ERALY] BMl £L9YE ABCIT v)
RIS BEML $.791 (RBCI{ 01y
Ztr Lowh U5k #0Du2 [=1 D R

fHis I8 [He URIGINAL YERSIUN OF FHE CODE. THE SUBROUTINE WILL OFEN TWO CHANNELS
Tu fre uisk DRIVE (% w 15, THEN IT WILL FRINT A USER #1 COUMMAND (BLDCE READ).
AL LHANMNELs WiLL gE CLUSED [0 THE DISK DRIVE. A CHAMNEL WILL BE OPENED FOR
INFUT AHD » CHARRLTER WILL BE INFUT. & COMFARISON WILL BE MADE TO SEE IF THE
Flns T CAHRALTER INFUT I35 %22 (ABCILI Z0. IF IT IS5 NOT $22 THE THE FROGRAM WILL
BRAMCH T0 $2997 WHERE THE FROGRAM WiLL CRASH. IF 17 IS A $31:2 THE FRDGRAM WILL
FALL {HRU W THE NEXT CHARACTER INFUT. & COMPARISON WILL RE MADE YO SEE IF THE
SECOND CHaRALTER 18 %35 ip5CIT %3, IF 1T IS NOT. THE FROGRAM WILL BRANCH T0
/990 aND CRASH. IF T IS EGUAL T3 £I9 THEN THE FROGRAM WILL "FALL THRU® 70 THE
JMF %9464 WHERE THE MAIN FROGKAM RESIDES.

THE ERRON [YFE THaT THIS FROGRAM LOQUKES FOR I8 29. IF THE DISK HAS THE FROPER
ERROR, THE ERRUK CHARNNEL WILL RETURN: 2%,DI3E ID MISMATCH, 01,02, AS YOU CAN SEE
[HE FIRST TWU CHARACTERS WILL BE 7 % 9. THE SUBROUTINE Wil CHECK EACH CHARACTER
INDIVIDUALLY AND EXECUTE THE MaIN FROBRAM 1F THE FROFER ERROR 16 RETURNED.

F T N LR N e
8]

o !ILHLJ'ILHL’:U\L'!L’I
r)

20

J3S5AZ 20

«SOAD

03
co
3T
ED
OF

SRR]

OF
kA
co

FE
FF

FC

20

T

(W1¥)

LDA
LbxX
LBY
JER
LDA
LD%
LDY¥
JSR
JSR
LDA
LDX
LIy
J5R
LbA
LDX
LDy

- JSR

J5R
LDx
J5R
L.y

5 LDk

HEW
J5k
Ny
BNE
JBR
Lhx
J5R
JSR
AND
FHA
JSR
CME
BNE
JER
FLA
CHMF
BNE
JMF
LEA
8TA
LL#A
57A
LUy
S1A
Ine
BNE
JMF
EGK
kel
ECR
J SR
EMI
JSK
(R4

SUBROUTINE # 2 ORIGINAL CODE

H#30Z
480
#3735
$FFED
#30F
#4083
#$S0F
$FFRA
FFFCO
H$ol
HELF
#EIS
$FFED
*EOT
#% 08
BEO
HFFBA
$FFLCO
BBOF
$FFCY
#F00
$35CC, ¢
FISHD
$FFDY
$358%
$FFCC
#$0F
$FFC6H
$FFFCF
#EFF

FFCF
$$0D
$255H

sFFCC

L3 W)
2EA0
$EH0A
BERN
t-B

$24

$-C

00
(%FHE) Y

$3I0H7
$FCE2

AT

$31,X
$2070
$I5FD

$I2I0

SOUO0

THIS SUBROUTINE WILL CHECH
FIRST BYTE FROM THE ERROF CHANNEEL (CMF #$22 OR ASCII 2). MOST ERRORS FROM THE

DRIVE WILL BEGIN 2

% CHARACTER NAME Page 54
STORED AT

$25C0

SET FILE NaAME (170}

BET LOGICAL., 15T & 2ND ADDR (1%,8.1%)
OFEN FILE {15,8,15,"1/0")

1 CHARACTER NAME

STORED AT

3LoBF

SET FILE MAME (#)

SET LOGICAL, 18T & IND ADDR (Z.85,7)
OFEN FILE (Z.5.3,"4")

OFeN CHANNEL 15 FOR OUTFUT

FRINT CHRACTERS TO LIBK DRIVE (U1:3 O 01 O2)

CLUSE [70 CHANNELS

OFEN CHANNEL 15 FOR INPUT
INFUT A CHARACTER

FUSH THE CHARACTER ON THE STACKE (SAVE CHARACTER)
INFUT ANOTHER CHARACTER

CLOSE 1/0 CHANNELS

FULL. THE CHARACTER FROM STACK

CMF 10 3% (ASCI1 20

BRANCH [F NOT EGUAL TO %32 (ABCIID 2}
JUMF TG START OF MAIN FROGRAM

INDIRECT INDEXEDR ADDRESSING
USEDR TO ERASE ML CODE
FROM $34A4 TO $735AA

THEN CRASH FROGHAM
ASCIL #
ALl 17
AGCIT O
ASCIT UL
ASCTI

ASUTT 2
ASCIT G
ASCIT ot
ASCI1 o7
ASCIT RETURN

FOR ANY ERRDR ON THE DISK. 17 WILL ONLY CHECK THE

(r.e. 200 21, 22, 22, 24, 27 or 270,

« GAGO
<BANZ
L BA0Y
ORDY
HRDY
L OoAGEH
L af0D
L BAOF
oRlE
Lefily
JOALT
JORLS
hALH
JOHLE
BAZY

« BAZZ

canal
CAR2E
LEAZD
-1 R
WSAIS
JORIY
COALH
LBRLC
LEATE
LORTL
ELLE
CBA4E
L EA4T
-EE
ord b
LHALD
L DFA0
CORSY
L HAD4
LoAEy
BALY
L 0A5E
LAAGD
RreTEle] o
121~
L BAGT
JORG7
OR6A
EALE
ERED
N-1.E1S
cEATL

CBATE

A9
Az
AC
20
nY
Az
Aw
20
Y
B

A

i
il
0
HYy
RZ
A
20
20
(6
Al
o0
Ay

=0

t? =

Do
Ay
20
c?
Fo

AP 00

=
o}

Ay
D

20

AT .

GATE D

THIS HROGRAM WILL CHECK

og

05
FL
0F
(31=1
OF

Ff

FF:
FF

LDA
LDX
Loy
J5R
LBA
LDX
LDy
JSKR
JSK
BLE
LbA
Lbx

LDy

FF
FF

i

F¥

Fi°

FE

FF

20

THREE EXAMPLES
HOUTINE.
REMEMBER
ThY TO LEAVE »5 MUCH CODE A5 FOSSIBLE INTACT. MODIFY THE FEWESY RYTES FOSSIBLE.
CONTAING THE DEEC $FB COMMAND. THIS MAY BE IMFORTANT TO THE FPROGRAM

LOCATION

S0 DON’T JUST THANGE

COMFARE

$CA20

JOR
LA
t D
by
JER
J ok
LEC
LDx
Jak
LD
JER
CHF
ErE
DA
JE5R
CHE
BEG
LDA
ST
LDA
BNE
J5R
LD
LDx
LDY
J5R
[
Llx
DY
JHR
JSH
L béy
JME
EOQR
J8R
EM1
MDD
AND

AND

SUBROUTINE # 7 DORIGINAL CODE

#$0S
#4058
#305
FFFBA
#4001
3 X-Y4]
#HFLHA
$FFED
SFFC0
$6145
#BUOF
#4508
#BOF
FF LA
#5000
#EHE
FESHA
$FF&D
$ERCO
FFE
LET
$FFCe
#E0F
+FFCF
#$22
+6A45
#H0OF
SFFCE
#$I2
T840
#$00
$01
#$05
2LA4T
$FFCC
HEUF
#3082
BEOF
3FFRA
#3010
#77
#34A
FFHHD
FFFCO
$E00
F5ETR

FL0.X
(3493 ,Y

SEE ¥

Page 55

SET LLUBICAL, 157 % ZND ADDR (5.8.%)
1 CHARACTER NAME

STORED AT

F6HOA

SET FILE NAME (#)

OPEN FILE (5,8,5."#")

SET LOGICAL, 181 & IND ADDR (15,8,15)
2 CHARACTER NAME

STORED AT

tTohek

SET FILE NAME (Ul: 5 0 35 1)

OFEN FILe (15,8,15!

DECREMENT $FR ($FE = $FB-1!

OFEN CHANNEL (15) FOR INFUT

INFUT CHARACTER
CH TQ 332 (ASCID 2)
BRANCH IF NOT EDUAL (TO $I2)

INFUT CHARACTER
CMF T #7753 (ASCIT 2
ERANCH 1F EQUAL (70 $322)

CRASH COMFUTER

ENDLESS LOOF TO $6R47
CLOsE I/0 CHANNELS

SET LOBGICAL, 18T & ZND ADDR (15,8,1%)
1 CHARACTER NAME

STORED AT

BORTT

SET FILE MAME (1)

OFEN FILE (15,8.15."1")

JUMF TO START OF MAIN FRUOGRAM
50T #

&SCIT Ul

ABCTT

ASCIL 5

ASCIT ©

mSCII

RSCIT =

ASECIT 11

FOR THE ERROR TYFE 3. TAKE SOME TIME TO0 EXAMINE THESE
YOU CAN DETERMINE HOW T0 BYFASS THE ERROR CHECKING
YOUR RESULTE
THAT THERE ARE MANY

WITH THE THREE BROKEN VERSIONS ON THE NEXT FEW FAGES.
DIFFERENT WAYS TO DRISABLE THE ERROR CHECKING ROUTINE.

THE FIRST FEW BYTE OF THE SUBROUTINE TO JMFP $SRIE.

PROGRAM PROTECTION FOR THE C-64 Page 56

The most important item to look for is the KERNAL subroutines.
The logic of this program may be fcllowed by examining the
function of the KERNAL calls. The first thing the program will do
is set the logical file #8 (AC), the device #8 (¥XR) and the
secondary address #1 (YR). The program will then set the file
name. The name 1s 4 bytes long (AC) and begins at the location of
$082F (XR & YR). Then the program will load RAM (program file)
from the disk drive. The reason we know that the program will
load from the disk drive is because the device number 8 was set
earlier. After the program has loaded into memory the computer
will jump to location $6000 and begin executing the program that
resides there. The AC, XR and YR have been loaded with specific
values prior to performing the JSR to the KERNAL. By setting
these registers to the proper values, the KERNAL will know which
files to open or what program name to wuse, The Programmer's
Reference guilde contains a listing of the KERNAL and how the
associated registers must be set to perform the specific
functions. Pages 272 to 306 contain the KERNAL functions, you may
(will) find the layout confusing to use at first. The only time I
use these pages is to find out what the function of the registers
are when KERNAL calls are used. You will find that the memory map
contained in the last few pages of this book will give you a more
complete and easier to use listing of the KERNAL.

Notice that JSRs to KERNAL subroutines. Any time a ML program is
going to access the disk drive it 1s necessary to use KERNAL
subroutines. If the program is going to load another program from
the disk, KERNAL subroutines will be used. If the program is
going to read a block of information from a user file, XERNAL
subroutines will be used. If the program is going to try to read
a bad block on the disk, KERNAL subroutines will be used. TIf the
program is going to check for an 1.D. mismatch (error 29), KERNAL
subroutines will be used. If it sounds like I am trying make a
point, vyou're catching on. KERNAL subroutines are used
extensively in program protection routines. For most of the
programs on the market today, all one has to do is to find the
KERNAL routines to find the program protecticn schemes. Most
programs contain only one small area that contains the total
program protection scheme.

Usually the pregram will contain a number of files on the disk.
It may be necessary to check each file on the disk in order to
find the program protection code. I usually start with the first
file on the disk and examine it, then I examine the next file
until I find where the protection schemes resides. Lets take a
lock at a typical subroutine that will check a disk for a bad
block or I.D. mismatch. It does not matter what type of error is
on the disk, the errcor checking routines will be similiar to the
example listed. All error checking routines will use similar
syntax to accomplish their task. Examine the ML code in figure 4.
Then review the same program written in BASIC, figure 2., Notice
how similar the two proagrams are. Comments have been included to
make the ML easier to understand.

PROGRAM PROTECTION FOR THE C-64 Page 57
SUBRUUTINE # 1 mODIFIED CODE

LS00 AY O LOA #3040

LEYGZ2 20 BDOFEOJSK $FFRL
LTUS AT OF LUDA #30F

LEY0T7 AR U LI #8808

LLF09 RAY TAY

LETOA YO BA FF USK $FFBA
YO0 20 Lo FF OISR OSFFCR
L2910 A% U1 [MEEEE S i)
PR W 30 LDX #$55
L2914 . 1LDY #%29
L2916 Zu BD F¥ USSR $FFBD
L2519 AT 0% I.DA #3$02
LL91EB R g LDX #s0g
L2710 A8 TAY

C29LE 20 BR FIF OJSR $FFR&
L2921 20 CO FF JSR $FFCO
L2924 20 CC FF OJSR $FFCU

LT AY OF LDY #$OF
20 L7 FF JSk $FFUY
AG DG LDy #%00
By Se &9 LDA 827994,V
Fis gk REL $291%
24 02 FF JSk $FFDZ
LNY
DU Fy HNE $292:
20 LU FF OJSR BFFCUL

ALOF LOX #%0F

Z0 Lé Kb J9R SFEFCE

S0 Lr FFOJSR $FFCF

Ly L LME #%20 URIGINAL VERSTON: CMP #4172
Do O BNE $2957

S LR #F ooR SFFLF

SR P AT CME #El0 ORIGINAL VERSION: CMF #3%3I2
D a2 M- $2950

410 md 90 IMFP 89064

40 EL FL Jmr $FLEL

i

o A1 EOR $31.3%
16 A

20025 LD JSK 320
300 Z0 HMI 42676
U] EMI $25%1

20 L2 oD JSF $0DIE

ONCE THIS FROGRAM HAS BEEM SAVED ON & DISKE WITHOUT ANY ERRORS 1T WILL ERE
MECESSARY TG MODIY THE CODE SO THAT THE FROGRAM DOES NOT WANT TO FIND ANY ERRORS
UH THE DISKE, THE DMLY CHANGE THAT 15 NECESSARY TO MAKE 1S: CHANGE YHE TWO
LIIFARLS0NS 50 THST THEY WlLL WANT T4 FIND %30 & $30 {ASCIT O % 0O). WHEN THE
FROBRAM GOES 10 THe DISK AMD RERDS THE BLOCK IT WILL RE G0OOD. 50 THE ERRDR
MESSAGE RETURNED witl BE 00, 0k,00,00, ASCI{ O = $I0. THAT I8 WHY THE COMPARISON
WILL HAVE 10 BeE Y0 320 NOT 80 THE FRUGRAM THAT CONTAINS THIS SUBRDUYTINE CAN BE
SAvED BACKE TQ DISE &ND THE FROGRAM Wicl FUNTION NORMALLY ON ANY DISK THAT DOES
NOT CONTHIN RN ERROKR,

UTHER LHANGES COULD HAVE BEEN MADE TO THE PROGRAM AND ACCOMFLISHED THE SAME
{RSK. THE Ccuok THAT REFFESENTS bNE 52952 COULD HAVE BEEN UHAHGED 10 NOF ($E&) AT
BOTH LUCATIONS, THIS WAY THE FRObRAM WOULD HAVE “FALLEN THREU™ ND MATTER 1F THERE
Wrz AN ERRUR UK NUT. Tae JMP $FCEZ COULD HAYE BEENM CHANGED TO JMF $7064. THIS
WAY THE FROLRAM WOULL HAVE JUMPED TU THE MAIN PROGRAM WHETHER THERE WAS AN ERROR
Ul Bgi.s CrNoorUld FINR ANY BTHER WAYS T CHANGE THE CODE S0 THAT THE FROGRAM WILL
RUN ON #NY D1sk7?

PROGRAM PROTECTION FOR THE C-64 Page 58

SUBROUTINE # = MODIFIED CODE

L3551 AY OF LDA #3077
38553 AZ CO LDXx #sC0
<3558 a0 35 LDY #3735
. 3557 Z0 BD FF JSR &FFED
. 235A AT OF LDA #B0F
. oooh A2 0B LDX #%08
L S03E RO OF LDY #$aF
L3040 Z0 BA FF JSKR $FFERA
« 50675 20 Cu FF JSR $FFCO
3566 AY U1 Lle #%01
L5568 A2 BF LDX #&kF
O358A AD 2D LY #%35
) BL FF J5R $FFED
[A2) LIA #%F02
[VIE LDX #$03

0z LDY #3073
Bq FF JSR $FFRA

22978 20 CO FF JSR SFFCO
WIS 7H RZ OF LDX BEOF
22870 20 C? FF JS5K $FFC9

« a0 AL DO LDY #%00
350BZ B9 C3 35 LDA $T5CI, Y
, 3585 FO 06 BEU $258D
CSEB7 ZO DI FF OJSR OSFFDZ

[Ms] INY

Do FS ENE $3582
20 CC FF JSR $FFCC
Az OF LDX #$0F

2 20 Ce FF JSR $FFC6
0 CF FF JSR $FFCF

29 FF AND #$FF

48 FHA

24 CF FF JSR $FFCF
- C% oD CMF #$0D

V3DA0 DOOFT BNE 3$237H
L 33AZ Zu CC FF JSR $FFCC
. 33RS 6B

2 30AE L9 IO
+33A8 DO O

. 30AR 40 OA 26

OURIGIMNAL VERSION: CMF #3122

ISR A7 AR LCA #$AA
.3oAF B FR STA $FR
«aoBL AS 4 LDA $34
. 35BZ B85 FC STA $FC
A4 00 LDY 00
g1 FB DTA ($FEI.Y
cg INY
oo FB BNE $25E7

2 FC JMF $FCEZ

ONLY ONE BYTE OQF THIZ ROUTINE HAD TO BE
CHANGED IN ORDER T0 MAKE THIS PROGRAM WORE.
THIS ROUTINE WILL MNOW WANT 70 SEE THE ERRDFK
MESSAGE 00, 0K, 00,00, OTHER CODE MARY EE
CHANGED TO ACCOMFLISH THE SAME TASH.

TRY T0O COME UF WITH QTHER METHODS THAT WILL
WOFRE .

00 QRA $0000

. SHAD
(0AUZ
« HALY
OHQE
L ALY
RENTe)]
cBAND
L HA0F
JORLZ
LOA1S
OAl7
LOR1g
VOALE
L0A1D
«HAZG
L ORZZ
JARZ4
L GHED
caRdy
LaRZ0
LGRZE
CORZU
P GASS
CORZT
L OALe
R 3A
» ORIE
L oriE
-1 EN]
y ofFd
EBAdy
aR4T

Loldd §

L or4h
caA4D
CeRd
L 0RS
CoRod
« BRGE
LOFSY
« BASE
yorED
-1 13
OReL
«BAGS
COHOT
Aok
Ty
L aRED
+ORGE
VORI
LBRT7 T
VO 4

oA

AT

Al
20
Ay
AL
A
20
20
BO
RY
AL
AO
20

A

L
2o
AT
P"" <
S1¥)
20
RY
A2
RO
20
Pyl
AY
4C
s
Lo
S
20
au
i

.-
)

i1

3

V]

LS
BR
1
&R
(=121
ED
(8}
3
OF
08
OF
kA
1C

Cn
il

R

1

—e
]

20

)
a4

FF

FF

F¥
FF

FF

FF

©FE

FF

FF
FE

£

v

L Di
LDx
LDY
J5R
LDA
LDx
LDY
J SR
J5R
RCS
DA
LDX
LDy
JSh
DA
LiX
LBY
JSR
J5R
DEC
LDx
J ok
DA
JGR
CH#
EBEU
[
J5R
CmME
bMe
_ba
2FR
LDba
ENE
JE8H
LDA
L_Dx
LDy
JSk
LG
X
LDy
J5K
J5k
LDA
JME

EUR

J5k
EMI
AND
=MD

PROGRAM PROTECTION FOR THE C-64 Page 59

SUBROUTINE o = M™MODIFIED CODE
#3005
#%03
#3035
FFRA
#301
#56A
#$aA
+FFBD
$FFCO
$6A45
#%0F
#3008
#40F
$+FFBA
#3500
#%6bB
L¥ 1-13)
$FFBD
HFFCO
$FR
#FOF
FFFCA
#30F
$HFCF
#3332
BHASD BRIGINAL VERSION: ENE $64/5
#EOF
3+ CF
#3535
$604D DRIGINAL VERSION: BEG $64AD
#S00
$01
#8059
$6A47
$FFLIC
HHEOF
#$08
BEUF
BFFBA
BH01
#3577
#EHA
$FFED
$FFCC
#300
$SRLE

$o1.0%

$2035

F2O3G

$I0, X
(R4S Y

IHIS VERSION WILL WORK ON ANy DISE THAT DOES WOT CONTAIN ANY ERRORS. THIS TIME THE
BRANCH INSTRUCTIONS WERE CHANGED. ON THE OTHER SUBROUTINES THE COMPARE INSTRUCTIONS
WEKE CHANGED,

OFHER,

NAT BOTH.

THE stRNAL

BEITHER METHOD WILL WORK ON ALL THREE ROUTINES. JUST TRY ONE OR THE
WHEN YOU ARE TRYING TO FIND THE ERROR FROTECTION ROUTINES HUNT FOR
SUBRDUTINES OR THE “ULl". THEY WILL BE USED IN MOST FROTECTION SCHEMES.

PROGRAM PROTECTION FOR THE C-64 Page 60

The first thing that the protection scheme will do 1s open two
files to the disk drive. One will be the error channel, the other
will be the data channel. It is necessary to have both channels
open prior to attempting to read a block of information from the
disk. Then the ML program will print the following ASCII
characters to the disk drive: Ul: 5 0 01 02. This the same
command that BASIC will print to the disk drive in order to

perform a user call or block read. The 'U1:' means to read a
block of information from the disk drive. The 'S5t will be the
data channel to use (previously opened). The '0" will be drive
number 0. The '1' is the track to use. The '2' 1is the sector.

Once the disk cdrive has tried to read this block of information
the ML program will read the error channel. It 1is necessary to
INPUT one byte at a time from the error channel. If the block was
successfully read, the error channel will return the message of
'00,0K,00,00'. If there was any type of error, the error channel
will return the error number, type of error, track of error and
sector of error (21,READ ERROR,01,02). For the error types 20,
21, 22, 23 and 27 the message will be similar to the preceding
error messadge. The only difference in the error message will be
the error type (21), track (01) and sector (02) of the actual
error returned. If the error type 29 is encountered the following
error message will be returned:; 29,DISK ID MISMATCH,01,02. Once
the first byte of the error message is returned the ML program
will CMP #%$32 (compare to hex %32, which represents 2 ASCII). If
this byte does not egual ASCII 2 the program will BNE (branch if
not equal} to where the program will crash. If the comparison is
equal the program will 'fall thru' the branch and continue to the
next INPUT, where another byte will be input from the disk drive.

Another comparison will be made CMP #$%31 (compare to hex §$31,
which equals ASCII 1). If this byte does not equal ASCII 1 the
program will BNE (branch if not equal) to where the program will
crash. If the comparison is eqgqual the program will 'fall thru'

the branch and continue to the next instruction, where the
program will close the files and JMP (jump) to the start of the
main program. The first comparison was for ASCII 2, the second
comparison was for ASCII 1, this is the error type 21. If the
program was looking for error type 29, the second comparison
would be for hex $39 (ASCII 9). The program will check to see if
the error type 29 exists at the proper location on the disk. If
it does exist, the program will continue normally. If the error
does not exist the program will crash. This is typical of most
program protection schemes. Some programmers will try to make the
protection scheme appear slightly different than what is listed
here. Instead of INPUTing a character ($FFCF) some programs will
INPUT a byte ($FFA5), others will GET a Character ($FFE4). Others
programs will perform a 'B-R' instead of the 'Ul1'. Occasionally
the programmers will try to confuse the novice by storing the
ASCII characters in reverse order (20 10 0 5 :i1U). ML <can read
the ASCII characters from front to back or vice versa.

The computer will store all numbers and letters in its memory as
a number. The number that the computer uses will not be the same
as the ASCIT number. Example: hex $30 = 0 ASCII: hex $ 31 = i
ASCIT, hex $32 = 2 ASCII, etc. Use the chart at the end of the
memory map section to find a complete listing the hex, decimal,
ASCII, BASIC and screen codes.

PROGRAM PROTECTION FOR THE C-64 Page 61

How do you go about finding this protection scheme, and once vyou
find it how can you modify the code so the program will run on a
disk that has no errors?

First load every program into memory from the ML monitor. Second
use the 'H' command to hunt for the KERNAL subroutines, the 'U1'
or 'B-R'. The other way to find the preotection schemes is to use
the 'I' command to look for the 'U1' or the 'B-R', CEither way
will usuwally turn up the proper location of the protection
scheme. Keep in mind that some programs will have wvalid KERNAL
calls that will have nothing to do with program protection. These
are programs that will load or save information on the disk. Word
processors, spread sheets, and data bases all access the disk for
reasons other than program protection. Try to find the KERNAL
calls that are located near the 'U1' or the 'B-R'. This will
probably be the area of the program protection. Most programmers
will put all their program protection in one small area. One
interesting thing to do is to look at a number of different
program preotection schemes. This will allow you to find how a
number of different programmers expand on the examples listed.

If you belong tce a users group or if you have friends who have
broken software, try to borrow the broken version of the program.
Many times it will be quite clear as to where the protection
schemes are and how they were defeated. Start with programs that
have been broken by somecne else first. These programs usually
are the most straight forward and have easy to spot program
protection schemes.

Remember: in order for the program toc read a bad block or to
check for an I.D. mismatch the feollowing commands must be issued.
This will apply for BASIC or ML.

1}. Open the error channel (15) to the disk drive.

2). Open a data channel to the disk drive

3). Print 'U1:' or 'B-R' CHANNEL + DRIVE NUMBER + TRACK +
SECTOR tc the disk drive.

4). Read the error channel to check for the error.

5). Compare the error received to the desired error.

6). Execute the main program i1if the proper error is found.

7). Crash the program if no error or the wrong error is
found.

This format is followed by the majority of the programs on the
market today.

PROGRAM PROTECTION FOR THE C-64 Page 62

CARTRIDGE PROGRAMS

Many cartridges may be easily down loaded to disk. To do this it
will generally be necessary toc have $2.00 switch added to your
computer or you will need a mother board. I prefer the $2.00
switch, it is easier to use and does not require any table space.
One word of caution before we start. You can damage your computer
or the cartridge by inserting the cartridge with the computer
turned on. It is possible to save the cost of the switch and by
inserting the cartridge after the power 1is turned on. This
technigue is used by many people, I do not recommend that you try
it.

If you don't have a mother board it will be a good idea to
install the switch that I mentioned before. This switch will make
it easy to down load most cartridge programs. By installing the
switch you may void the warranty of your computer. Installing the
switch reguires some knowledge of electronics and should only be
attempted by qualified persconel. Now is the time to decide to buy
a mother board or install the switch. This switch will be located
in the right rear of the computer, near the cartridge port. Below
is a set of instructions to follow if you wish to install the
switch.

7). Purchase a subminiature DPST toggle switch.

2). Remove the power, serial port cable and any other items from
the computer before starting. Open the computers case and locate
the cartridge port at the right rear of the computer,

3). Find an open spot just to the right of the cartridge port,
carefuliy drill a hole to mount the switch. It is cramped in this
area. Use care.

4). The pins are numbered from the center of the computer. It
will be necessary to locate pins 2, 3 & 8 of the top row. It is
not necessary to modify any pins of the lower row on the

5). Pins 2 & 3 contain the 5 volt power to the cartridge, Both
pins are connected to the same place on the printed c¢ircuit
board., You will need to cut both pins 2 & 3. Soclder the lower
half (printed circuit board side}) of the pins 2 & 3 together,
then solder the upper half (connector side) of pins 2 & 3
together. Remember they both contain power and 1t will be all
right to connect these pins together.

6). Install wires to one side of the DPST switch from the upper
half of pins 2 & 3 and the from the lower half of pins 2 & 3 to
the DPST switch.

7). Cut pin 8 of the top row of the connector, run wires from
the DPST switch to the top and bottom half of pin 8.

8. Verify that one side of the switch will turn on pins 2 & 3
and that the other side of the switch will turn on pin 8. Tnstall
switch and close the case ot computer. Reinstall the cables and
hook up your accessories to the computer,

9). You're done.

PROGRAM PROTECTION FOR THE C-64 Page 63

Pins 2 & 3 contain the 5 volt power to the cartridge. Pin 8 1is
the GAME line to the cartridge. These three pins must be switched
off to allow for the cartridge to be inserted without taking over
control of the computer at power up.

A). Turn your computer off and turn the cartridge switch off.
B). 1Insert the cartridge and then turn the computer on.

Cc). You should see 30719 BASIC BYTES FREE. The cartridge should
not take over contrecl of the computer, but the presence of the
cartridge will be detected by the computer.

D). You can now load the HIMON and execute it.

E). Turn the cartridge switch on.

FY. The ML monitor should still have control of vyour computer.
If the screen goes berserk, or the characters on the screen
appear to be scrambled when you flip the cartridge switch, vyou
will not be able to down load this particular cartridge. Some
cartridges will modify the character set when power is applied to
them (see chapter 17)., I have not found an easy way to circumvent
this problem. So for the time being, don't try to down load these
cartridges that scramble vour screen characters. Try another
cartridge, most will not be any problem to down load (p.s. these
cartridges will be covered in chapter 17).

F). Use the 'M' command to examine the memory starting at $8000.
G). If the cartridge is an auto start cartridge you should find
the code similiar to below:

;8000 09 80 70 8C C3 C2 CD 38
;8008 20

The first two Dbytes contain the vectors to the cold start
location of the cartridge ($8009 in this example). The next two
bytes contain the warm start vectors for the cartridge (%8070 in
this example). The next three bytes are the shifted letters CBM.
The last two bytes must be the hex representation for 80. When
power is first turned on, your computer will check to see if
these nine bytes are located at $8000. If they are, the computer
will suspend all of its normal activities and turn contrel over
to the cartridge, The cold start vector is used if the computer
was just powered up and the warm start vector 1is wused 1f the
'RESTORE' key was pressed. These vectors will point to the
appropriate location for your particular cartridge and may not be
the same as listed in the example. What 1is important 1is the
CBM80. The computer must see these five bytes. If the cartridge
is to be auto start., It doesn't matter if a cartridge is present
or not. If these five bytes are present when the computer 1is
reset or when the 'RESTORE' key is pressed control will be turned
over to the vectors. This is why cartridge programs that have
been down loaded to disk will run after the computer 1is reset.
The CBM80O will perform the same from RAM or ROM.

By turning the switch off before power up, we can keep the
computer from recognizing the data contained in the cartridge.
The computer will be able to tell that there is something located
at the cartridge location, but it will not be able to recognize
any of the data contained on the cartridge. This is why the
computer will have only 30719 BASIC BYTES FREE.

PROGRAM PROTECTION FOR THE C-64 Page 64

Cartridges normally occupy the memory location from $8000 to
$9FFF. This is 8K of memory. To save the information from the
cartridge to disk is fairly simple to do.

H). Use the 'S' commmand of the ML monitor to save the memory to
disk.

S "NAME",08,8000,A000 'RETURN'

$8000 is the starting address of the cartridge, $A000 1is the
ending location plus one, of the memory to be saved. Always add
at least one esxtra byte of data, scome monitors will not save the
last byte of data.

The computer may now be turned off and the cartridge removed. The
program can be loaded back in from disk. Use the ,8,1 command so
that the information will be relocated back into memory in the
same location. Try pressing the 'RESTORE' key. If the program
does not start executing, use SY¥S 64738 or press your reset
button to cause a warm start. This will normally bring the
program to life.

Occasionally the cartridge program will not work after it has
been down loaded to disk. Some cartridges put a small amount of
program protection in the ML code. Cartridges programs are
contained on ROM chip(s). This means that the information stored
on the chip can only be read, no information can be written to
the chip. ROM memory can be considered to be permanent memory and
it cannot be modified. The data on the chip can not be modified
or changed in any way. What some cartridges try to do is modify
their own memory as the program runs. Because the program is
contained on a ROM chip the memory can not be changed, so the
program will execute normally. Once this program has been down
loaded to disk and loaded back 1inte memory, the program now
resides in RAM memory. Programs which reside 1in RAM can be
changed or modified at any time. Now when the program runs it can
erase itself from memory or it can change just one or two bytes
of information. Remember that ROM based programs can not be
modified while they run, whereas RAM Dbased programs can bhe
modified at any time. If the cartridge program contains any type
of protection it will only affect the program if it resides in
RAM.

In order to find the protection placed on a cartridge it will ©be
necessary to load and execute the HIMON.

1). Load the cartridge program from the disk.

2)Y. Change the CBM80 to CBM0OO. This will prevent the cartridge
program from taking over control of your computer if you use the
reset button. REMEMBER to change this back to CBM80 prior to
saving the program back to disk.

3). Transfer the memory block $8000 - $9FFF to $4000.

T 8000 9FFF 40600 'RETURN'

PROGRAM PROTECTION FOR THE C-64 Page 65

This will allow you to have an area 1in memory to compare the
original program with.

4). Find the cold and warm start vectors for the cartridge. Use
the 'G' command to execute the cartridge. Try the cold start
vectors first. It may be necessary try the warm start vectors
after vou relcad the program.

G 8009 'RETURN" in the preceding example

5). After the program crashes, reset the computer with your
reset button. Use the SYS 49152 to re-enter the ML monitor.

6). Use the compare command to find any memory locations which
were changed when the program was executed. You previously
transferred the program to $4000, use this for the comparison.
Remember the ROM based program can not be modified or changed
while it is running, only RAM based programs can. Most cartridge
programs which contain any protection will usually modify only a
few bytes of memory or they will wipe out an entire block of
memory .

C 8000 9FFF 4000 'RETURN'

7). Write down the memory locations if only a few bytes have
been medified. Tf a block or two of memory has been modified
write down the general area of memory that has been modified,
This will give you an area to start looking at.

1f only one or two bytes of memory have been changed the program
will probably do something similar to the following example. For
instance, if the memory locaticon that was changed was $8400 and
its value was changed to 00 then you might find the code:

., 8040 AS 00 LDA #3%00
., 8042 8D 00 B84 STA $8400

ROM based programs would neot allow this to affect their
operation. Storing any value at a location which contains a ROM
cartridge will not change the value of the cartridge. If we store
a value to an area of memory where a RAM based program resides,
the value contained there will be changed. In order to find where
the code resides you could either use the 'D' command and search
the program line by line or you could use the 'H' to hunt for the
effected memory location. Scmetimes the only way to spot the
protection schemes is to look at the code with the 'D' command,
line by line. Anytime you see the program storing anything at
locations %8000 to $9FFF vyou can be sure it is part of a
protection scheme. The way to prevent the code from modifying the
RAM based program is to change the code at $8042 thru $8045 to
NOP ($EA). This is the No OPeration command, the do nothing
command for ML. The o©riginal program would STA (Store The
Accumulator) at location $8400. The fixed program will do
nothing. The code that resides at $8400 will not be chang 4.
Hence, the program will operate normally. Some programs will use
2 or 3 different locations where they will try to change some of
the code. Try to find them one at a time. It's not hard, it just
takes a little time.

CEHO0O Loy o]

PROGRAM PROTECTION FOR THE C-64 Page 66

550 coLD START VECT 02

SO
L EOO3 t:h‘_)x-

HOO4 L

L B00S (L
CHOUS GL 3y

L SO0 /Yy 0w
SR 3L Lo
LEOOE F 20
S L))
LEULL AY GO
1D "l

A LR R VO W S T
IR Vo) L2t
=] R o
AN

5%

i

SR
SR
L. F
L.DX
LDY
5Ty

ERN

(I~ A
e WARM START VEC7C 2
S SHIFTED & 8B/
- para
S CME g S0 RSCILT So
L&A #SOU
e W BEU00
LmEso | CARTRIDGE PROTECT/ION
LD #E6H0
S BTE BP0
ple Ay w0 LDty #4300
J1lE Sl o P STAR 9400
5 GTR 25300

w1 START OF PROGRAM
BHOU
sDCOE
W

PROGRAM PROTECTION FOR THE C-64 Page 67

The preceding example program changed the memory of the RAM based
program by directly storing a value in memory. As vou would
expect this is referred to as direct addressing (scmetimes called
absolute addressing). Values in memory can also be changed by
something called INDEXED addressing, INDIRECT INDEXED addressing
and INDEXED INDIRECT addressing. This can be a 1little hard to
understand at first. I will try to make it as clear as possible.
Look at the following example:

.. 8070 A9 0O LDA #%00

.,8072 A0 10 LDY #%10

.,8074 99 40 81 STA $8140,Y STA %8140 + Y ($8150)
.,8077 C8 INY ¥Y=Y+1 ($11)
.,8078 99 40 81 STA $81740,Y STA $8140 + Y ($8151)
.,808B A9 42 LDA #%42 START OF MAIN PROGRAM

This is an example of INDEXED addressing. This is very easy to
understand, just add the value of 'Y' to the value of the memory
location to arrive at the actual address. The value of 'Y' «can
any value from 00 to FF, so the actual memory location must be
within 255 byvtes of $8140 in the preceding example. Indexed
addressing is just as easy to 'fix' as direct addressing. Change
the bytes at $8074 thru $8076 to NOP and also change the bytes at
$28078 thru $807A to NOP. The address may be indexed with either
the 'X' or the 'Y'.

Now let's take a look at INDIRECT INDEXED addressing. This type
of indexing uses only the 'Y' register and 1is fairly common.
INDIRECT INDEXED addressing may be used to change a few bytes or
a block of memory.

.,8080 A9 00 LDA #$00 THE STARING ADDRESS IS $8200
.,8082 85 BB STA $B8 STA LOW BYTE (00) AT $00B8
.,8084 A9 82 LDA #$82

.,8086 85 B9 STA $B9 STA HIGH BYTE (82) AT $00B9
.,8088 A0 00 LDY #$00

.,808A A9 FF LDA H$FF

.,808C 91 B8 STA ($B8),Y STA AT $8200 + Y

.,808E C8 INY Y=Y+l

.,808F DO FB BNE $808C IF Y<>0 THEN BRANCH TO $808C
.,8091 A9 00 LDA #$00 START OF MAIN PROGRAM

INDIRECT TNDEXED addressing uses the zero page (see you book on
ML) to store the actual address as a vector, The address must be
stored in the usual lo- byte, high byte format needed for the
6510 microprocessor. When the computer performs STA ($B8),Y it
will Store The Accumulator at the location contained in $B8 and
$B9 plus 'Y'. The program has stored the address $8200 at $B9 and
$B8, the 'Y' is initially set to 00. So the computer will first
STA at $8200. Then 'Y' is incremented, a conditional branch (BNE)
is made to see if 'Y' equals 00. If 'Y' does not equal 00, then
the program will branch back to address $808C and perform the
operation again. This time 'Y' equals 1, so the new address to
STA will be $8201. This will continue to happen until 'Y' equals
$FF. When we increment $FF it will become (00. The BNE will find
that 'Y' now equals 00 and the program will 'fall through' to the
next instruction. This routine will fill the memory from $8200 to

PROGRAM PROTECTION FOR THE C-64 Page 68

$82FF with 00. If you find that your program has a protection
routine similar to the one described, there are several options
to prevent the program from erasing memory.

First is to change the high byte stored at $BY9 from $82 to $20
(or some other value). This will cause the program to fill the
memory from %2000 to $20FF with 00. This area of memory is not
used by the cartridge. Cartridges will only reside at the address
of $8000 and above.

Second would be to change the first three bytes of the routine to
jump by the program protection routine:

.,8080 4C 81 80 JMP 38091 JUMP BY THE PROTECTION
The third method would be to change the code at $808C and $808D

to NOPs. When the program came to this location it would do
nothing. Example:

.,B808A A9 FF LDA #S$FF
.,808C EA NOP
.,808D EA NOP
.,808E C8 INY

Either one of the three methods will perform the same task
equally well. Choose one and try it if you find similiar code in
a program that you are looking at. Just as there are many ways to
skin a cat, there are many ways to remove program protection. If
you are not sure on how to 'fix' the program, try something that
seems to make sense, If what vou changed works, fine. If it
doesn't work, that's OKX. You should restore the code to original
or reload the program and then try something else. Remember that
you cannot damage your computer by experimenting with the code,.
Many times I will try two or three things before one works.

PROGRAM PROTECTION FOR THE C-64 Page 69

The third method of addressing used 1in cartridge program
protection 1s the INDEXED INDIRECT., This type of indexing uses
only the 'X' register. Fortunately, most programmers do not know
hew to use this type of indexing. This indexed indirect
addressing can get very complicated. I would suggest that you get
ocut your book on 6510 or 6502 ML programming. Read and re-read
the section on INDEXED INDIRECT addressing. INDEXED INDIRECT
addressing may be used to modify a few bytes or to wipe out a
block of memory

PROGRAM PROTECTION FOR THE C-64 Page 70

CARTRIDGES 16K or MORE

Some of the newer cartridges contain 16K or more of memory. Most
cartridges contain only 8K of memcry (%8000 - $9FFF). Some
contain 16K of memory ($8000 - $BFFF). Others contain multiple
RCOM chips and the program will switch between the different banks
of memory contained in the cartridge, depending upon the function
desired. These are cartridges that contain a word processor, a
data base and a spread sheet, all in the same cartridge. I would
not recommend that you seriously consider trying to down load a
cartridge that wuses bank switching techniques. Extensive
modification of the ML code is necessary for the proper operation
of the program.

16K cartridges are similiar to the 8K cartridges. The main
difference is that the memory normally occupied by the BASIC
interpreter is also used by the cartridge. When the cartridge is
first plugged in and the power turned on, the computer will check
the cartridge port for the CBM80. If the computer finds the
CBMB80, it will check the GAME line (#8) for the presence of the
cartridge. If line #8 is present the computer will allocate the
memory from $8000 to $9FFF (8K) for the cartridge. If the
cartridge uses 1¢K, the entire memory ($8000 to $BFFF) is made
available by modifying memory location $0001. By storing the hex
value of $36 at $00071 the BASIC interpreter will be flipped out
and the cartridge memory will reside in this memory area. If vyou
suspect a 16K cartridges try storing $36 at location $0007.
Examine the code at $A000 and above, 1f any code resides here the
cartridge is 16K. 16K cartridges can be saved to disk in the same
manner as the 8K cartridges, just use the following save command.

s "“NAME",08,8000,C000 'RETURN'

This will save the entire 16K of cartridge memory to disk,
Program protection is similiar to the BK, only there is now more
room in which to put program protection. Usually vou will find
the same protection schemes, only there will be more room for
them. In an 8K cartridge there might be one, maybe two schemes to
defeat, in the 16K expect to find at least one, may be three or
four different areas of protection., Use the same technigues as
before to locate and fix the program protection schemes. One
additional item you will need to add to the 16K programs. Tt will
be necessary to turn off BASIC, the KERNAL or both prior to
executing the program. This will prevent any chance of
interference between the program and the operating system of your
computer. The first program is an example of how to turn off
BASIC from ML. The second program will allow you te turn off the
KERNAL from ML.

« . QACO
.,0ACQ2
-, 0A04

.,0A00
.,0AQ0
.,0A04

A9
85
4C

PROGRAM PROTECTION FOR THE C-64 Page 71

36 LDA
01 STA
09 80 JMmP
35 LDA
01 STA
09 80 JMP

#%36 REM: TURN OFF BASIC

$01 $01 WILL CONTROL MEMORY
$8009 START OF PROGRAM

#335 REM: TURN OFF KERNAL
$01

$8009

These programs are completely relocatable and may be moved any

where in memory.

particular program.

The jump command can be determined from vyour

PROGRAM PROTECTION FOR THE C-64 Page 72

ADVANCED ML PROTECTION

This chapter on advanced program protection will try to give vyou
clues on where to start looking when you run intc someone who has
taken additicnal time with the program protection scheme. Most
programmers will use only the easiest methods of program
protection. The more sophisticated programmers will use a little
more complex method to protect their programs. A few programmers
will use some really radical methods to protect their software.
The same rules apply no matter how complex the programmers try to
make things.

When you are looking at a protected program for the first time it
will be necessary to follow a logical procedure in order to find
the program protection in the least amount of time. TLook at
program protectiocon as if 1t 1s a big crossword puzzle. The first
thing to do is toc take care of the obvious and easy to correct
protection schemes. Then move con to the more difficult schemes,
finally to the hardest. I will try to give you a technique to use
when breaking programs.

1). LOAD and RUN the original program. Keep track of how long
the program loads until the bad block is encountered, if one 1is
used. This will also give you an idea of just how the program is
supposed to load until the protection scheme is encountered.

2). Copy the original disk with BACKUP 228, Many programs only
need to be backed up properly to work. BACKUP 228 will make a
good copy, without putting any errors on the destination disk.
3. LOAD and RUN the copy. If it works, vyou're done. If it
doesn't work, pay attention to how long the program loads before
it crashes. It is important to know how far the program gets
before checking for the error.

4) . Examine the BAM and directory. Correct the directory and the
BAM so that a complete file listing may be obtained.

5). Look for any bogus files on the disk. These are files that
do not contain any useful information, they just take up space.
6). Load and execute a ML monitor. Lecad in each and every
program. Hunt for KERNAL calls, 'U1' or '"B-R' in an attempt to
find where the program protection is located. Use the 'I' command
to see 1f the program is written in BASIC.

7). Once you find the area of the program that c¢ontains the
program protection it will be necessary to disassemble the ML
code in that area.

8). Find the code that reads the error channel and makes the
comparison.

9). Find all the KERNAIL calls and write down what each does. Use
a separate sheet of paper, if necessary, to keep track of the
KERNAL calls. Comments are very important when you are looking at
the code. They can be the most important help that there is when
you are examining ML.

10). Once you have commented the code, try to decide on a course
of action to remove the need for the error to be on the disk.

PROGRAM PROTECTION FOR THE C-64 Page 73

11). Modify the code as necessary.

12). Save the code back to the disk and try it. If vyou den't
succeed the first time, don't give up. Try another approach to
the problem.

This all sounds so simple. Doesn't itz

Most of the time it is. The average program takes me less than an
hour to break. This is only an average. Some programs have taken
less than 15 minutes, others more than a day. It all depends how
much protection is contained on the disk, and how sneaky the
programmer is. When you are just starting out it is important to
lock at as many different programs as possible. Some programs
will do some really sneaky tricks, most will not, Set a time
limit for yourself, if you can not find the program protection
schemes within a hour or so go on to the next program. Do not
start out on programs that you know have the best protection
schemes. I would recommend that vyou start out by looking at
programs that other people have broken. Once you are able find
the program protection, look to see what was done to break the
program. The best way to learn anything is to look at what others
have done and then to do it yourself.

All programs loaded from disk will be stored in RAM. Any program
stored in RAM can be changed or modified as the program runs.
Some programs will load a file from the disk and then modify the
file before it runs. Other programs will load a file from the
disk and move the code to another location before executing it. A
few programs will both modify the code and move it in memory. I
have included some commented examples of these types of programs.
Take some time to examine the programs before going further.

PROGRAM PROTECTION FOR THE C-64 Fage 74

SUBRUUT INE # 4 URIbINAL LODE

100 AY U LVA #%60 THIS RUUTINE WILL bHECK FOR THE FRESENCE OF A
«£102 Bl FE BU S51A 850Kk LARTRIDbE (ML MONLTUR) . LF FRESENT THE FPROGRAM
2100 LU FF BO JSK $EOFF Willh URASH.

<2108 AY 21 LUK #$21 TH1S5 STARTS THE INDIRELT INuEXED ADUKRESSING
«Z1UA BD rU DlA &L IHAT Wit CHHANBE SUME UF IHE FULLOWINL CUDE.
w2l A2 LU LUX #300

«2£1VE B8b Fb DA BFE MANY Ur THE FOLLOWING SUBKDUTINES wllL HE LHANBGED
Z21lU RAY FF LLUR #$Fr FRUM JESK $<UXX 10 Jbk SFRXX.

nalle RO DL LY #%32

2114 9l FB LR iSFB) LY IHIY b LUNE 10U HIDE ITHE LUWE FRUM THE USeR.
welll HL LD LLDY #%.52

LL1l8B YL FB ik (BFHE) LY IMly WILL MRKE THE MROTELILUN SCHeEME A LLJTLE
e21lR AU sk LY #$5c TUUbHER U DrUI

&1l Y1 ko DIkl (SEH) LY

w211l B0 4r LY ®$4F

W&l Yl FB SIA \$FB)aY

valze AL O/ LY ®$S/

axlid 7)1 Fp DiA LRFEF Y

maiad HOU /0 LY RB$/U

“dlubd Y1 FD SR ABrB) LY tnio 15 yHE END UF ink INDINEL) LNDEAED RDDK.
wileR RY UK LUK HS0UF

vilel Heoub LXK #2up

2l AU UK LUY #%ur

wetel LU BA LU JOR BLUBR Il WILL BE CHANGED (U $kFFBA

W 2130 20 Ly L0 JBR B20L0 IMLY Wikl Sk CHANOED 10U s+FCO

valao AY W1 LUK B0}

P L10E Re Kk LLX #%rs

Ll2A AU 21 LY #%Ls)

fZlil £V BD 20 Joh $20BD IHlD Wil bBE CHRANBED 10U $FRBD

213k AY UL LLA #3000

«£141 Rz LY LLX #3004

A4S AL LD LUY ®%0o

»2185 20 BA FF Joon 3rFBRA SET LULILAL. 181 % <ZND RDDR (3,B,9)

2148 20 LU FF JBK SFFCO UFEN rlLE

214B Ax OF LDX #SUr

L1440 2L LY XU ISR $20CY IHIS wilkih Be CHANGED 10 ®FFC9

2190 A2 LU LLA #%0U

21592 BL B4 21 LLA B21F4,.X

WL10D 20 D2 LU JBR BRUDZ IHIS WILL dk CHANLED 10 ®Frbe

ol vl 1NX

2109 BL UL Li'X ®SUL

ZLlTB DU ED BNE $215s

W10 20U LU FF Jbk BFFLL LiUbe L/U LHANMELS

L4160 AL LK LUX #Sur

welbd LU Lb FF JUbR ®FFLB UFEN LHANNEL Fuh INFUF

ZL1bT AL VO LDA #9000

Wxlb/ LU LF FF JoR SFRLUF INFUI LHRRALIER

axlbR LY og LMH ®%os LIMF U $3g (RbLLIL &)

CLlél vu L/ HNE %2173

walbl 20 Lr U JDK doulr IHlsS WICL B CMANobED TU $Frir

ZliL Ly 3/ LI BB/ Ltk 1U %3/ (Msull 7

~2175 ro 4 bt $ol/Yv

.21/0 /8 okl

wLl/ib 4L /6 £1 JMF Blls0 ENDLESDD LUUP

wals? 4L 24 LY JPF BLUTLL STAKE UF MALIN FROGKRAM

PROGRAM PROTECTION FOR THE C-64 Page 75

THE FOLLOWING CODE 15 AN EXAMPLE OF THE ROUTINE THAT MAY RE USED TO MOVED ML £0DE
IN MEMORY, THIS ROUTINE WILL ALSO MODIFY EVERY BYTE THAT IS5 MOVED. FORTUNATELY
MUST FROGKAMS DO NOT USE THIS TyFE OF PROTELTION SCHEME 10 HIDE THE CODE. IF YOU
00 NOT UNDERSTAND HOW IT WORKS yDU SHOULD TAKE TIME TO EXAMINE THE CODE. THIS
MODIFICATION DCES NOT DCCUR IN MANY PROGRAMS. BUT YOU SHOULD BE AWARE THAT 17
DOES EXIST.

ZOFFR A9 O LDA #$00 THIS 1S AN EXAMFLE OF INDIRECT INDEXED ADDRESSING
JOFFD 835 FD SThm 3FL USED TO MOvE ML CODE FROM $2000 - $I000 TO
LIGFFF A9 Z0 LDA #$70 $3000 - IFFF,

LA00L 8% FE S5TH SFE

LHO0E A% 00 LDA #$00

L6003 B2 FH STH $FE

L0007 A9 20 LDA #%20

. 6009 8% FC STH $FC

JHOGR ARG 00 LDY #$00

.500D Bl FE LDA (%FE) .Y IT WILL ALSDO MODIFY THE CODE BY THE USE OF THE
LBO0F 49 A EOF #EAD EDR #%AR0D COMMAND. THIS IS5 THE £XCLUSIVE OF

o011 51 FD STA ($FD) .Y COMMAND. SEE YOUR BODK DN ML FDR FURTHER INFO.
L601E CEB TN
L6014 DO FT ENE 36000

Lould Ea FE INC $FC
L5018 AL FC LDA s$FC
L0014 29 20 CMF #$2G
,&01C Do ED ENE $&00B
COOLE &0 RTS

TO SEE THE EFFECTS OF THE CODE WILL REQUIRE YOU 70 CHANGE THE RTS ($60) TO

EBRE ($00). THEN USE THE &1 COMMAND TO EXECUTE THE SUBROUTINE: & SFFR, THE ML CODE
FROM 32000 TO $2FFF WILL BE MODIFIED (EDR #%A0) AND MOVED (STA ($FD).YD IN
MEMORY. BY CHANGING THE RTE ($40) TO BRE ($00) ¥YOU CAM EXAMINE THE CODE FROM
37000 TO $3FFF. THE COMFUTER WILL TURN OVER CONTROL OF THE COMFUTER TO THE ML

MONITOR WHEN THE BRE COMMAND IS ENCOUNTERED.

PROGRAM PROTECTION FOR THE C-64 Page 76
SUBROUTINE #® 4 mMODIH |ED CODE

L2106 A% A0 LDa #ean
L2107 8D FF BO STA $BOFF
L2103 20 FF 80 JS5R $BOFF

2108 A9 21 LDA #421
. 2108 85 FC STA $FC
L2100 AZ 00 LDX %400

.<10E 86 FB STX $FB
,2110 A9 FF LDA #$FF

L2112 A0 22 LDY #%.2
2114 91 FE STA ($FB),.Y
Jallé AQ 35 LDY #%I5

2118 71 FB STA ($FR) .Y
«211A RO SE LDY #%3E
LS11C 91 FB STRA ($FR). Y

L2ULE AQ 4F LDY #%4F
2120 91 FB STa (FFBEY.Y
L2122 A0 57 LDy #%37
2124 91 FE S5TA {$FB) .Y
L2126 AL 70 LDY #%70
.2128 91 FE STA ($FR),Y
L212R A9 OF LOA #%0F THE FOLLOWING CODE WILL BE AFFARENT AFTER THE
JAL2C AZ o8 LDX #%08 INDIRECT INDEXED ADDRESSING HAS RUN,

LDY #$0F

FF JSF $FFE&A SET LOGICAL, 18T & ZND
FF JSR $FFCO OFEN FILE (15,8.15)

LDA #%01

LDX #%FZ
C2ZA ACG 21 LDY #¢£21
.212ZC 20 BD FF JSR $FFED SET FILE NAME (#)
J213F A9 05 LDA #4095
2141 AZ 0B LDX #%08
L2147 A0 05 LDY #3035
L2145 20 BA FF JSR $FFEA SET LOGICAL. 18T % IZND ADDR (E.8.%)
L. 2148 20 CO FF JSR $FFCO (BFEN FILE
L214R AZ OF LDX #20F
L,214D 20 CY FF ISR SFFCY OFEN CHANNEL FOF INFUT
L2150 A2 00 LDX #4000
L2152 BD Fa 21 LDA $21F4,X
L.£19% 20 D2 FF JSBR $FFDZ PRINT CHARACTERS TO DISE DRIVE (Ul: 3 O 01 ooy
L2158 E8 IX
L2159 B0 QC CFY #40C
L, 2158 DO F% BNE #2152
, 215D 20 CC FF JSR $FFLC CLOSE 1/0 CHANNELS
L2160 AZ OF LDX #%0F
V2162 20 L& FF JSR $FFCa OFEN CHANNEL FOR INFUT
V2165 A2 OO LOX #4200
2167 20 CF FF JSR $FFCF INFUT {HARACTER
J216RA C9 37 CHMF #4327 CMF TO %22 (ASCII 2) ~ CHANGE 7O CMF $20
s 2146C DO 07 ENE %2175
L216E Z0 CF FF J5SR $FFCF INPUT CHARARCTER
2171 L9 37 CMF #$37 CMF TO 27 (ASCII 77 — CHANGE TO CHMF $70
L217ZOFD 04 BEG 32179
L2175 78 SEI
(2176 4C 76 21 IMP 42176 ENDLESS LOOF

L2179 4C 24 09 JMF $0924 START OF MAIN PROGRAM

PROGRAM PROTECTION FOR THE C-64 Page 77

There are a few programmers out there that have developed such a
sophisticated protection scheme that it 1is not possible to
directly load the program files in to memory and find their
protection scheme. Some of these programmers will make the code
so confusing that it is not worth the time to decipher and modify
their protection scheme. Other programmers will save their
programs on a special disk drive that will not store the
information in the standard 1541 format. These disks will be read
compatible with the 1541. This means that your drive will be able
to read the information from the disk drive, but you will not be
able to exactly duplicate the original disk when vyou copy it.
Others will save their program on a disk, then put bad blocks on
the original disk at the same blocks where the information is
stored. When you load the program it will modify the DOS of vyour
drive. They will actually bypass the error checking routine on
your disk drive and read information from these bad blocks,
without making the head beat up against the end stop. A few
programmers will put multiple errors on a single block. When this
bad block is read in the conventiocnal manner one error will be
returned, when the DOS 1is modified another error will be
returned. Some disks will not contain all the tracks. When the
disk was formatted it was done in a special disk drive. This
drive may be programmed to skip tracks or to format the disk in
any manner .

Any programmer who has the knowledge to modify the DOS is sure to
have a 4good grasp of program protection. At least enough
knowledge to keep the average person guessing for many hours
(days) as to what 1is happening and why. The most sophisticated
methods of program protection will involve hundreds of hours to
write. Fortunately most programs are not protected in this
manner. I don't even try to find cut how or what the programmer
is doing when the protection scheme is this complicated. What I
do, is to let the program load into memory. Reset the computer,
then dump the ML code to the disk. This is a much easier method
of getting the code. Then all that is needed is to find the
proper entry point to execute the code. Experience 1is a great
help in finding this entry point, the more programs you have
examined the easier it is to find. These types of protection are
better left as they are. It is not that they <can't be broken,
it's that the time reguired to break them, in the conventional
manner, 1s excessive.

When looking at these few selected programs vyou will find it
easier to let the program load into memory and check for its own
particular type of error. Then, just before the program is going
to execute, reset the computer. Usually the computer will perform
a normal reset. Now the whole program is in memory. Most of these
programs will use a separate loader program. This loader program
will load in the main program and check for errors. The main
program usually does not contain any error checking routine. it
just contains the actual program. After the main program has been
loaded into memory you can now examine the program with a ML
monitor, The program may now be SAVEd with the wuse of the ML
monitor to another disk.

PROGRAM PROTECTION FOR THE C-64 Page 78

If you use the above method to bypass the error checking routine,
you will find it much easier than trving to figure out what some
of the more sophisticated protection schemes do. Occasionally,
after you load the program into memory and reset the computer you
may find that the computer does not want to reset normally. You
push the reset button, the screen shrinks and the computer either
locks up or the program begins executing. This is a result of the
program storing the CBM80 at 1location $8000+. Whenever the
computer is reset it will check to see if the CBM80 is present,
if it is the computer will turn over control to wherever the
vectors point to. This can be particularly hard to get around. If
you have a ML monitor that is cartridge based you <can turn off
your cartridge switch, insert your cartridge, turn the switch
back on and then reset the computer. One problem with this is
that code located from $8000 to 3$9FFF will be erased when the ML
monitor is activated. Another problem is that when the computer
is reset the code from 30000 to $0800 is reinitialized and any
subroutines or special values stored there by the program will be
erased. Another alternative 1is to 1look at each block of
information on the disk until you find the CBMB80, then change one
of the bytes (i.e. change the '8' to '0'). When the reset button
is pressed the computer will reset normally. All five bytes of
the CBM80 must be present in order for control to be turned over
to the vectors. Changing any one of the bytes will prevent this
from happening. Don't forget to change the CBMB0 back to normal
before saving the program to disk.

Following is a step by step procedure to follow if you feel that
the program protection scheme is to hard to break. This will
allow you to get the program after the protection scheme has
checked for its special type of protection.

1). LOAD and RUN the original program. Keep track of how long
the program loads until the program executes. This will tell vyou
when the program has passed its protection scheme.

2). LOAD the program a second time. Reset the computer just
prior to it executing. It is necessary to reset the computer as
close to its execution time as possible, within one second or
less.

3). 1If the computer does not reset it will be necessary to
search the disk for the CBM80. Change the '8' to '0' on the disk,
This will prevent the auto start feature from taking over control
when the computer is reset.

4). Load and execute the HIMON. Examine memory to find out where
the procram starts and ends. Remember to flip out BASIC and check
to see if any code is stored in the RAM that underlies BASIC ROM.
BASIC may be flipped out by storing $36 at location $0001.

5). Save the program to disk. Then try to find an entry point
that will cause the code to execute (use the 'G' command).

6). Some programs will store valid ML code at the same location
that the HIMON uses. To get the preocgram that resides from $C000
to $CFFF it will be necessary to use one of the other ML
monitors. Repeat steps 1 thru 4, only this time use one of the
other monitors to down load the code from $C0G00 to $CFFF.

PROGRAM PROTECTION FOR THE C-64 Page 79

7). It may also be necessary to examine the ML code from $0000
to $0400 to see if any values have been stored at these
locations. If they have, it will be necessary to save the area of
code to the disk. It may be easier to write a little boot program
that will store the proper values in effected locations.

8). Once the code has been saved to disk it will be necessary to
properly load all the code back intc memory and Jjump to the
proper entry point.

This type of program breaking is the meost involved and time
consuming. It is not a job for the beginner. Do not start using
the technigques presented in this chapter until you have mastered
all the other chapters.

One guestion that everyone asks is: How do you find the proper
entry point to execute the program? Experience is the only
answer, once you have examined encugh programs it will become
apparent where the program starts. Look for the area of memory
that will change the color of the screen (STA $D021). until vyou
gain the necessary experience this 1is a good place to start
locoking.

Another good trick that some of the advanced programmers use 1is
to store ML code on the screen. First they will set the character
color to match the screen color or the 'RASTER' may be disabled.
Either method will not allow any character to be seen on the
screen. Then the program will load a file to the screen memory.
The program will then execute the code contained at screen
memory. If you were to reset the computer the screen would be
initialized and the code would be erased. The best way to examine
the code that is supposed to reside at the screen location is to
use the program called 'U! AND U2', First it will be necessary to
find where the informaticon resides on the disk. If the program
that loads data to the screen performs a block read, start by
looking at the block that is read. Most programs that use this
form of protection will do a valid block read. Use 'Ul AND U2' to
load the block into memory. Lecad and execute the HIMON. The block
will now be stored at $1000 to $1100. With the ML monitor it will
be possible to examine and modify the routine as necessary. Once
you have modified the code use the 'X' command tc exit to BASIC.
RUN the 'U1 AND U2' and use the same program to save the medified
code back to the disk.

Another very good method of program protection is thru the use of
a 'DONGLE'. A dongle is a plug in device that will act as a

security key. This key 1is necessary for the program to run. The
dongle may be inserted in the any port of the computer. Some may
be very simple (a reslistor across two terminals) or very

sophisticated (4 I.C. chips including a shift register). Each
dongle will perform in a different manner. Some may be bypassed
very easily, others may not be bypassed with complete success.

Start by locking for the memory location that may be affected by
the dongle. If the dongle pluygs into the joystick port #1 look
for the memory location $DCO1 {or $0419) ., When you find the
program doing something with this memory location you will
probably be in the right area. Try to document what the program

PROGRAM PROTECTION FOR THE C-64 Page 80

is doing, comment the code fully. Sometimes it will be necessary
to modify a few comparisions (CMP) or change the values that will
be stored in memory. Many times the function of the dongle will
become apparent when the code is fully understood.

Another alternative to the dongle is to make a c¢ircuit to
duplicate the actions of the original dongle. This may be easier
for some people who are familiar with TTL circuitry. By all means
use the method that will provide the easiest method to produce a
working copy of the original program.

As you can see there is not one sure methoed of breaking every
program. Each program is unique and special 1in its own way.
Programmers are getting more sophisticated every day. Each time
someone finds a new method of program protection someone else
will find a method of breaking it. I hope that you will be able
to use some of the technigues presented in this book. Remember,
start out by locking at programs that someone else has broken. If
you can not break it yourself, then look to see how the other
person did it. It is necessary to progress from the easy programs
to the difficult. Don't start out by looking at programs that
other people have not been able to break. Start out with the
small fish, then go after the bigger ones. Pretty scon vyvou will
be able to break most anything that comes along.

GOOD LUCK!

PROGRAM PROTECTION FOR THE C-64 Page 81

PROTECTING YOUR OWN SOFTWARE

In this chapter I will recommend some methods of program
protection that you may want to use on your own software. All the
methods contained in this chapter will make use of the principles
that you have learned throughout this book., First offer a
duplicate disk to the legitimate purchaser at a reasonable price.
This way it will not be necessary to pirate your software in
order to obtain an archival copy.

The most important lesscn that you have learned 1is that bad
blocks are harmful to disk drive. If you are going to wuse bad
blocks on your disk be sure that they are there only to foil
pirates, not the legitimate user. By this I mean don't make the
program read a bad block in order for the program to work. Place
the bad blocks on the disk only to foil the back up programs.
Store your files on the disk in such a manner that the blocks of
the file are spread throughout the disk. Then place the bad
blocks on the disk wherever the program does not reside. This way
when the user loads the program they will not encounter the bad
blocks. If someone tries tc back up the disk up it will play
havoc with their disk drive. Remember, the legitimate purchaser
can buy the duplicate disk at a nominal fee.

Modify the disk directory so that it is no longer listable. Don't
just change one byte of code, change fifteen or twenty bytes of
code. Make the pirates earn their treasure. Too many programmers
give their programs away by not adeguately protecting their
disks. Modify the disk directory so that it will become an
endless loop. Change the name of the disk, the T.D. and the 2A to
un-printable characters. Add a few bogus programs to the disk in
order to trip up the file copy programs. These can be programs
that will put the drive in an endless loop or send the drive to
bad blocks. Add the special characters after the first 3$A0 in the
program name. Use program names which are as unigue as possible
($0D, 03).

Use a number of programs that load prior to the main program.
Have your BOOT program load another program, this program will
store a few values in memory and load another program. The third
program will store a few more values in memory and load another
program. Then have the fourth program store a few more values in
memory and load the main program. The main program will contain a
number of places that will check to see if the proper values have
been stored in memory by the prior programs. Have the main
program check the disk to see if any bytes have been changed in
the directory. If they have, cause the program to crash. It is
possible to put so many small protection schemes on the disk that
most any pirate will go crazy trying to find them all. Buy a good
BASIC compiler, have scme of your code in compiled BASIC. It 1is
not usually worth the time to decipher the compiled code.

I hope that you get the drift of what 1 am trying to say. Make
the disk so hard to crack that the pirates will waste a whole lot
of time trying to break your program. If you set the program up

PROGRAM PROTECTION FOR THE C-64 Page 82
properly it will not be worth the time required to break it.

The biggest problem that software authors have today 1is the
MODEM. Once a program is broken and placed on a bulletin board
the program can travel across the country in a few days. Any one
can down load your program in a matter minutes. If the program is
set up so that it needs many smaller programs to load it into
memory and it needs to see gpecial information on the disk, most
of the time if it does get broken it will not go very far. If you
can keep the pirates from placing your software on the bulletin
boards it will be worth the extra time taken to protect it.

Try to find somecone who has the special programmable disk drive
(good luck}. Save the information to the disk in such a manner
that it cannot be copied by the 1541 disk drive. Use scme of the
tips contained in this book to protect your software, Use some of
your own. If you have to borrow the techniques wused by other
programmers, that's OK. Remember it 1is not the idea that is
copyrighted, it is how the programmer expressed the idea.

Finally change the 'A' to an 'E' in the BAM (track 18, sector 0).
This can be the most difficult trick for the software pirate to
get around.

Any program can be broken. Any protection scheme can be gotten
around. Sometimes the protection scheme will provide a challenge
to the pirate. Sometimes the pirate will place a greater value on
his time than he does on your program. At any rate, don't give
vour software away. Make the pirate work for the treasure.

PROGRAM PROTECTION FOR THE C-64 Page 83

PROGCRAM DISK

The program disk contains many useful utility routines., These are
the programs that I use when looking at program protection
schemes. There are two other programs that you will need to
purchase in order to have a complete tool kit. These are a track
and block editor and a cartridge based ML monitor.

CLONE MACHINE (R) by MICRO-WARE DISTRIBUTING INC. This 1is an
excellent program for editing track/blocks. This not the only
good program for this purpose, it just happens to be the program
that I use. CLONE MACHINE will allow vou to view and edit
individual blocks from the disk. This is similiar to DISK DR.
DISK DR will work in decimal and will display the characters in
screen codes. Whereas CLONE MACHINE will work in hex and ASCII.
It may be necessary to use both programs when examining disks.
The only function of CLONE MACHINE that I wuse is the edit
track/block.

HESMON (R) by Human Engineered Software is a cartridge based ML
monitor. This is an excellent program. It has many more functions
than the ML monitors that are supplied on the program disk. The
most important feature 1s that HESMON is contained on a
cartridge. The ML monitor does not need to be loaded intc memory,
just plug in the cartridge. It will also dump the ML code to vyour
printer so that a hard copy of program listing may be obtained.

The following programs are contained on the program disk supplied
with this book. These programs are all public domain and may be
duplicated by any one. This first group of programs are to be
used with the book. These are tutorial programs and are not part
of the toel kit.

TEST #1 is a simple BASIC program used to demonstrate the effects
of simple pokes on the program.

KEYBRD BUFFER is used to demonstrate one of the uses that the
keyboard buffer may be used for.

ERROR CHECK is used to check a specific block for errors. You may
input the track and block to be examined. The disk drive will try
to read the block. Then the error channel of the drive will be
read and the error (if any) will be displayed on the screen. This
is a simple and convenient way to check a bleck for errors.

RESTORE is a ML program that can be used to restore the pointers
of a BASIC program after the computer has been reset, When the
computer is reset the BASIC program becomes unlistable, the
program still resides in memory, you just can't see it or run it.
RESTORE will reset all the necessary pointers to make the program
listable.

PROGRAM PROTECTION FOR THE C-64 Page 84

SUPER LINES is a simple BASIC program that has been modified to
prevent tampering with the program. Many of the line number are
over 64000. BASIC will not allow line number greater than 63999
to be entered. With the use of the ML monitor, the 1line numbers
can be modified to any number up to 65535. Many of the 1line
number have the same number. Yet when the preogram does a GOSUB,
the program will return to the proper place.

MOVE BASIC is a simple program that will allow you to reset the
pointers so that BASIC will reside higher in memory.

MOD POINTERS is a BASIC program that has been modified to hide
some of the line numbers. The lines do exist, they just will not
list when the pointers have been modified.

ML, & BASTIC is a simple BASIC program that has been relocated
higher in memory and a short ML routine placed before the
program. The ML routine is entered by the 5YS command and the ML
will turn over control to the BASIC program that resides higher
in memory.

ML & BASIC #2 is a simple RASIC program that has been relocated
higher in memory and a short ML routine placed before the
program. This program will give some help to those people who can
not find where the ML & BASIC program resides in memory.

TEST ML is a short ML routine. This is not a functioning program.
Its only purpose is to allow you to find where ML routines reside
in memory. Look for the KERNAL subroutines and try to decipher
the logic of the subroutine from $2100 to $2200.

USER FILES is a BASIC program that will allow a block of data to
be loaded into memory. Additional blocks of data may also be
loaded into memory and stored at successive memory locations. The
data from the disk may be examined with the use of the ML
monitors. The program will normally reside from 2048 to 2688
(decimal) in memory. Do not store any data lower than 2690 when
using this program or the data will over-ride the program.

USER.WOW is the same program as USER FILES, only this is the
compiled version. The compiled program is 32 blocks longer than
the original version of the program. Tt will execute slightly
faster than the BASIC version. Use this program for a comparison
of a compiled program versus program written in BASIC. The
compiled program will occupy memory from 2048 to 10768 (decimall).
Do not store any data lower than 10770 when using this program or
the data will over-ride the program.

PROGRAM PROTECTION FOR THE C-64 Page 85

The following programs are the actual utilities that vyvou may find
useful when examining program protection schemes. These programs
are part of my tool kit.

DISK DR is a track and block editor. Use this program to examine
and modify blocks on the disk. DISK DR will not work on disks
that have their directories placed in an endless loop. It will
show all the code in decimal and will display the screen codes on
the screen. Sometimes it will be necessary to use both CLONE
MACHINE and DISK DR when examining programs. The program is menu
driven and casy to use. List the DISK DR for a pleasant surprise.

LLMON 5YS8192, LOMON SYS$32768 and HIMON SYS49152 are ML monitors.
They are the same program, just relocated in memory. If yvou load
a ML monitor into memory it will over-ride any code contained in
that area. Some programs will store values at many different
memory locations. It may be necessary to use the LLMON to examine
one area of memory, then use the HIMON to examine the area of
memory that was occupied by the LLMON. These monitors do not
contain all the function of HESMON (R), but they are very good
programs.,

BLOCK AL & FREE is a short BASIC program that will allow vyou to
ALLOCATE or FREE a block on the disk. This program will only
modify the BAM, no data on the disk will be changed. When the
directory has been extensively medified it may be necessary to
use this program to ALLOCATE or FREE blocks on the disk.

APPEND is a very simple program that will allow vyou to append
(iocin) two or more BASIC programs. First renumber the program
lines of the programs to be appended, SAVE these programs to
disk. LOAD and RUN the append program. LOAD the first program,
then POKE 44,8:POKE43,1 'RETURN'. Your first program will be
appended to the APPEND routine. RUN line 1 again, then load vyour
second program. POKE 44,8:POKE 43,1 'RETURN'. The second program
will be appended to the first. You <can now delete the APPEND
program.

I.D. CHECKER is a BASIC program that will allow you to read the
actual I.D. from the disk. A few programs will need a special
I.D. in order to RUN properly. Other programs will use an 1.D.
mismatch in corder to generate an error. This program will display
the 1.D. of track 18 sector 0, then it will display 1.D. of the
track and sector to be examined, finally the actual track and
sector number of the block. All the numbers are displayed 1in
decimal, it will be necessary to convert these numbers into ASCII
(use the chart provided in the memory map section). Pay attention
to the track and sector numbers that are displayed when the disk
contains certain errors. The track and sector numbers do not
always contain the proper numbers.

DISK ADDR CHANGE is a program from your disk that was supplied
with your disk drive. Use this to change the device number of
your disk drive.

BACKUP 228 is a BASIC program that uses a ML routine to speed up

PROGRAM PROTECTION FOR THE C-64 Page 86

the program. This 1s a program that I use to make the first copy
of a disk. BACKUP 228 will not put any errors on the destination
(copy)} disk. It will only transfer the data from the original
disk. BACKUP 228 will read the actual I.D. from the original disk
and will format the destination disk with this I.D. It will also
check the original disk for the 'A' on track 18, sector 0. If the
'A' is not present the character contained there will be
displayed. If this character is an 'E' special copy methods will
have to be used to backup the disk.

1). Copy the disk from track 19, block 0 to track 35. Then copy
the disk from track 1, block 0 to track 18.

If you have CLONE MACHINE (R} vou can eliminate the 'E' from the
destination disk.

1). Copy the disk from track 18, block 1 to track 35. Then copy
the disk from track 1, block 0 te track 17. Do not copy track 18,
block 0.

2). Load and execute the edit track/block feature of CLONE
MACHINE (R). Insert the source disk and examine track 18, block
0. Change the 'E' to an 'A', do not press 'RETURN'. Remove the
source disk, insert the destination disk and press '"RETURN'.
You're done.

A few disks do not contain all 35 tracks on the disk. The disk
will be prepared on a special programmable disk drive that will
not format all of the tracks. Use BACKUP 228 to skip over these
tracks (i.e. if track #2 is not present, copy the disk from track
1, block G to track 1. Then copy track 3, block 0 to track 35.).

DISK CHECKER is a simple BASIC program that will check 3 Dblocks
on each track. Some disks will contain many tracks full of errors
(#2171 or #27 errors). Usually error #21 or error #27 will be full
track errors and these tracks do not contain any information,
just errors. If you check the disk with DISK CHECKER before
making a copy, vou may find these bad tracks. Use BACKUP 228 to
make the copy and skip over these bad tracks. This will keep vour
disk drive from being beat to death.

Ul & U2 is a BASIC program that will allow you to load user files
into memory, edit them and save them back to disk. The user files
will be stored at memory location: hex $1000, decimal 4096. The
ML monitor may be used to examine and modify these files. Use the
‘load' function to store a user file in memory. Then load and
execute a ML monitor to examine the diles (at %1000 to $10FF).
Exit ('X') to exit to BASIC. Run the Ul & U2 to save the file
back to the disk.

SPEED COPY is a 4 minute copy program for the 1541, Disconnect
all accesscries from the computer. Leoad and run the program.
Press RETURN after you insert the source disk and when you change
disks.

PROGRAM PROTECTION FOR THE C-64 Page 87
ADVANCED CARTRIDGES

Certain tools are necessary for the breaking of cartridges. Some
of these were described in chapter 12 on cartridge protection. In
this chapter we will expand upon what was mentioned in chapter
12. We will also introduce some new tools of interest to those
who wish to investigate cartridges.

Hopefully yvou have either installed the switch described in
chapter 12 or purchased a mother board. (Cardco distributes 5
slot expansion boards which have a nice built-in reset switch.
These can be purchased for under $60. Check at your dealer or
contact us at CSM if you are interested in purchasing one of
these devices.)

In chapter 12 we discussed the fundamentals of making cartridge
back-ups. Briefly: 1. Load your HIMON. 2. Switch out the
cartridge. 3. Place the cartridge into the game slot. 4, Switch
in the cartridge. 5. Transfer the memory from 8000 to A000 to
disk (8k).

Many cartridges can be backed up in this fashion. However, many
cartridges now have some form of protection. through which they
cause your RAM copy to '"self-destruct”. The details of these
copy-protection schemes were discussed in chapter 12. You may
have attempted to copy one of your cartridges and found that your
computer was locked up merely by switching in the cartridge! You
were unable to gain control of the computer. All attempts to get
control resulted in either the cartridge getting control, or the
system being locked up.

The reason for this strange behavior has to do with the way in
which the computer is teold to configure its memory. The various
memory configurations are detailed on pp. 260-267 of the
Programmer's Reference Guide. There are two important pins on the
expansion (game) port: pin 8 which is called GAME and pin 9 which
is called EXROM. The voltages applied to these pins have a lot to
do with the memory configuration the computer adopts. In 1its
normal state the GAME and EXROM are high (5 veolts). However, when
a cartridge is in the slot, it may ground either one or both of
these pins. On power-up or reset the computer checks the voltages
on these pins. If one or both or them are 1low (grounded), the
computer configures its memory differently.

Memory locations $0000 and $0001 also play a role in what memory
configuration the computer adopts. As was mentioned earlier, when
bit zero of address $0001 (LORAM) is set low, BASIC is switched
out. You can change address $0007 from your ML monitor. You will
probably find that 01 contains $37. Try changing it to $36 from
yvour ML monitor. You have switched out BASIC! Now try exiting (X)
your monitor. You will find that the computer is locked up. This
is due to the fact that you tried to exit to BASIC and BASIC
isn't there! Remember, you switched it out. If vyou changed
address $0001 to $35 you would switch both BASIC and the KERNAL
rom out. This will immediately crash the system if vyour monitor

PROGRAM PROTECTION FOR THE C-64 Page 88

makes any calls to the KERNAL., If you want to have some fun, you
can transfer (T in the monitor) memory from A000 to C000 into
AQ0O. This gives you a RAM copy of BASIC. Now you can switch out
BASIC ROM and exit your monitor without causing a system crash.
You are in your RAM copy of BASIC. Now, if you wish, you may
return to the ML monitor and actually modify the BASIC
interpreter. 1f you know what you are doing you can create new
BASIC commands. Similarly, vou can transfer a copy of the KERNAL
into RAM and switch out the KERNAL rom. You can now modify the
kernal! Remember, if you make changes things are going to be
different. You can easily make changes which will «c¢rash the
system. However, the clever programmer could improve both BASIC
and the KERNAL. You might {(with the help of a tool described
below) be able to re-write the KERNAL in such a way that it would
not initialize th memory from $0000-%0800 upon a reset. This
would allow you to "capture" more of a program that you were
examining., Remember, normally zero page is initiallized on reset,
This destroys any values which a program may have placed there.
Those values may be essential to the proper running of the
program. Their absence may cause the program to crash when vyou
try to run it.

Thus the values of LORAM and HIRAM (bits 0 and 1 of address
$0001) also have much to do with the way the computer "sees" its
memory. In its normal configuration LORAM, HIRAM, GAME and EXROM
are all set high. Some cartridges set EXROM low while leaving the
others high. This forces the computer to adopt a different memory
configuration. In this case, the 16 K from 8000 to BFFF is
occupied by the external cartridge ROM (or RAM). Cartridges which
configure memory in this fashion do not cause the computer to
lock up when you try to examine them. There are, however, other
options.

Some cartridges set GAME low (by grounding pin 8) and leave EXROM
high. In this case the computer "sees'" the cartridge in the 8 K
block from E000 to FFFF. Yes, this eliminates the KERNAL! There
is no problem in doing this as long as no calls are made to the
KERNAL. Obviously cartridges which locate themselves here don't
make KERNAL calls. They have built-in routines to accomplish what
the KERNAL would have accomplished. Furthermore, many important
system vectors are contained at the high end of memory. The
cartridge RCOM has its own set of vectors at these locations and
can thus get control upon reset or power-up since the system must
vector to where the cartridge tells it to go. {(Note: This system
causes an auto-start to occur without the use of the CBM80 spoken
of earlier, Iin fact, it cannot use the CBM80 since those
characters must appear at $8004-$8008 and in this configuration
the cartridge ROM appears at $EQ00 to $FFFF.)

How then do we get a RAM copy of such a cartridge? This gquestion
has at least two good answers: 1) Physically change the cartridge
board so that pin 8 (GAME) is not grounded and that pin 9 (EXROM)
is grounded. This really isn't difficult. You must '"break open"
the cartridge housing and carefully examine the structure of the
board. Pins 1 and Z are both system ground. One of these may be
directly connected to pin 8. If you sever this connection, pin 8
will remain high. Now be sure that pin 9 1is grounded. Try

PROGRAM PROTECTION FOR THE C-64 Page 89

axamining the cartridge now. You may be able to "see'" the program
now residing at $8000 with vyour machine language monitor.
Remember that the data contained on the cartridge does not know
where it is supposed to reside in memory. The way the pins are
configurcd determines where the data will reside in the computers
memory. If you can disassemble it you should transfer a copy to
your disk. It may be that this methed fails to work. 1In that
case you may want to add another tool to vyour tool kit (see
below).

We aren't done yet! Remember, this program expects to be located
at $E000 to $FFFF. You may want to change the pointers in the
program file {(on the disk) to cause it to load te that locaticn
{Use Clone or Disk Dr.) or you will have to write a ML loader
routine (see below) that will relocate the program to $E000 and
JMP to the entry point.

You will now have to examine the vector at $FFFC (and $FFFJ4).
This is the system reset vector. The computer is going to jump to
the location specified by this vector upon reset (or power up).
This will be the entry point into the cartridge or to vyour RAM

copy! Write down the entry point for future reference. All that
remains is to write a short ML loader program which will 1) Load
the copy to $E000. 2) switch out the KERNAL rom (put a $34 at
$0001). 3) Jump to the entry point you wrote down earlier. This

may be all that has to be done, However, if cartridge protection
(as described in chaper 12) is present, you will have to locate
it and remove it.

Above it was mentioned that there were at least two good methods
for investigating these "strange'" types of cartridges. The second
methed involves the use of an EPROM programmer. We have found
that the PROMENADE by Jason-Ranheim 1s an excellent device and
well worth the small investment (CSM is an authorized dealer).
With this device and the accompanying softwarc you can not only
examine cartridge ROMs but you can make exact copies of them on
an EPROM (Erasable Programmable Read Only Memory chip}. You can
then plug the copy ontc another board and 'voila-a' perfect
working copy! The PROMENADE c¢an alsoc be wused to examine a
cartridge ROM. You must remove it from its board and drop it in
the PROMENADE. Then, with one simple command, ycu can dump the
program on the cartridge into memory and examine it with your ML
monitor. If you are willing to invest a few dollars, you can buy
a "Proto-Clip" which allows you to clip directly onto the ROM
chip without removing it from the board. If you wire the other
end of the clip to a 28 pin socket you can drop the socket into
the PROMENADE, clip onto the cartridge ROM and examine it,
down-lcad it etc.

The PROMENADE allows you to put your own routines or utilities an
a cartridge. 1If you are tired of 1locading the DOS wedge or
whatever, you can now "burn" these programs into your own EPROM
and have them auto-load upon power up or reset., Jason-Ranheim
manufactures two different bank switch boards. One holds up to 4
EPROMS (max. 128k}, the other holds up to 8 such FPROMS {max
256k). You can select any one of the EPROMS and address an 8K
block of memory in it. This gives you access to up to 128K with

PROGRAM PROTECTION FOR THE C-64 Page 90

the 4 slot board or 256K with the 8 slot Dbeoard! Remember, vyou
will be loading from EPROMS with extremely fast access times. You
can burn all your frequently wused utilities into EPROMS,
selecting any one using one POKE and one SYS. You are also
provided with a routine through which you can burn BASIC programs
onto the EPROMS and have them auto-load. Using the Cardco 5 slot
expander with five of the 256K boards you could have up to one
and a guarter megabytes of programs at your fingertips!!! Think
of the possibkilities. 1.25 megabytes with virtully instant access
time.

A final word to the adventuresome: Abacus software publishes two
excellent books: The Anatomy of the C-64 and The Anatomy of the
1541 Disk Drive. The former contains fully commented assembly
language listings of the BASIC and KERNAL rcoms. These will prove
very useful if you decide to get creative and modify one or both
of these programs. The disk drive book contains an excellent
commented assembly language listing of the DOS in your disk
drive. If you spend the time to familiarize vyourself with the
workings of the DOS vyou will realize that there are many
parameters which could be c¢hanged 1in order to cause strange
things to happen during formatting or during error checking or
whenever. Unfortunately the disk drive only contains 2K of RAM
memory and thus you cannot make a RAM copy of the operating
system (like you can do with BASIC and the KERNAL) and modify it.
There is hope for the creative however.

In most disk drives the DCGS chips are removeable. If you have an
EPROM burner (like the PROMENADE described above) you can remove
the DOS chip from your disk drive, drop it in the PROMENADE and
load a copy of the DOS into the memory of the C-64. Once the DOS
is in memory you can disassemble it using your ML monitor. You
will find it to match the listing in the Anatomy of the 1541. The
point here is that the RAM copy can be modified wusing your MI,
monitor. This modified version can be burned into an EPROM and
this EPROM can be placed back into vyour drive. You are now

running under your own DOS!! We currently have disk drives
capable of reading and writing 41 tracks!! Clever c¢hanges may
allow you to create extra tracks, half-tracks, turn off error

checking etc. You could theoretically re-write the DOS totally
and sell your version to other 1541 owners. Perhaps less error
checking would make the drive run substantially faster.

If you use your imagination you will <come wup with many ideas
which are relevant for copying cartridges and for the breaking of
some of the more sophisticated copy protection schemes being used
now to protect programs.,

The game goes on. It will always go on. The programmers will
devise better protection schemes. The pirates will break those
schemes. New schemes will be devised and so on. There are
presently dozens of pregrams which claim to be able to copy a
large number of protected programs. Some of them are guite good.
You may have purchased a number of them already. Keep in mind
that all those programs will become obsolete quickly. New
protection schemes will be developed which defeat all of them.
You have two cholces: You can continue to purchase copy programs

PROGRAM PROTECTION FOR THE C-64 Page 91

as they are improved. Or you can keep up with developments in
protection methods and break the latest generation of protected
programs {you can do both).

HEX
0000
0001
0003-0004
0005-0004
0007
0008
0009
0004
0008
000C
00CD
D00E
000F
0010
0011
0012
0013
0014-00135
0014
0017-0018
0019-0021
0022-0025
00260024
0028-002C
(020-002E
002F-00T0
0031-0032
00330034
0035-0036
0037-0438
1039-0034
0036-063C
203D-003E
003F-0040
0041-0042
0043-0044
H045-0046
0047-0048
A049-0044
0048-004C
004p
004E-0053
0054-0055
$057-0060
0081
0062-0065
0ngd
0047
0048
0069
D0AA-O0ED
006E
DOSF
0070
0071-0072
0073-008A
007A-0078
D08B-Q08F
0090
0091

MEMORY MAF BY CSM SOFTWARE PO BOX 9437,

DECIMAL

23-24
25-32
34-377
38-42
I-44

45-44
47-48
49-50
i1-32
53-54
39-56
57-58
39-40
&1-62
8364
85-bh
67-68
69-70
n-712
TI-74
7576
18-83
84-84
87-94
97
98-101
102

103

104

105
106-107
110

1

ti2
113-118
115-138
122423
139-143
144

145

DESCRIPTION
Chip directional register
Chip 1/0: memory % tape cantrol
Fioat-Fixed vector
Fixed-Float vector
Search character
Scan for quates flag
TAB-column save
0=L0AD, 1=VERIFY
Input buffer pointer/# subscript
Default DIM flag
Type: FF=strima, (0=numeric
Type: B0=integer ,00=floating point
DATA scan/LIST quote/ memory flag
Subscript/Fnx flag
0=INFUT; $40=GET: $98=READ
ATN sign/Comparison eval flag
Current I/D proapt flag
Integer value
Fointer: tesporary strg stack
Last teap string vector
Stack for tempory strings
Utility pointer area
Product area for multiplication
Pointer: Start-af-Basic
Pointer: Start-of-Variables
Painter: Start-of-Arrays
Pointer: End-of-Arrays
Painter: String-storage
Utility string pointer
Painter: Limit-of-gemory
Current Basic line number
Previous Basic line nusber
Pointer: Basic stateeent for CONT
Current DATA line number
Current DATA address
Input vector
Current variable nase
Current varisble address
Variable pointer for FOR/NEXT
Y-save: op-save: Basic poiater save
Comparison syabol accumulator
Misc work area, pointers, etc.
Jump vector for functions
Wisc work area
Accumdl: Exponent
Accuadl: Mantissa
Accua¥l: Sign
Series evaluation constant pointer
Accusdl overflow
Accum#2 Expon.
Accuad? MANTISSA
Float accus K2
Sign Comp. #1 vs B2
Accunk] lo-order (rounding!
Cassette buffer pointer
CHRGET subroutine; get Basic char
Basic pointer (within subrtn)
RND seed value
Status word ST
STOP and RVS flags

HEX
0092

2093
0094

2093
0096

097
0098

0099
0094

Q098

)9e

Jalogi]
09

009F
00AC-00A2
NOAT
004A

O0R3
00Rs

Q0R7

00AB

Q0A9
QORA
00AB
00AC-00AD
DORE-00AF
00BO-00R]
00B2-00B3
00B4
00BS
00Bb
D087
0088
0089
00BA
00BB-00BC
008D
0OBE
COBF
00Co
0QC1-00CZ
00C3-D0C4
00CS
00Ch
00C7
ooce
00C?-00CA
00CE
00CC

00CD
00CE

0000
00010002
0003
0b4
0003
00Db
00D7
0008

CROWN FOINT.

DECTMAL

144
147
148
149
150
151
152

53
13
135
13
157
158
159
160-162
163
164
183
166
167
168
169
170
174
t72-172
174-175
176-177
178-179
180
181
182
182
184
185
1B
187-188
189
190
191
192
193-194
193-196
197
198
199
200
201-202
203
204
205
206
208
209-210
m
212
23
218
25
216

IN.
DESCRIPTION

Timing for tape

Load=0, Verify=1

Serial output deferred char #lag

Serial degerred character

End of Tape received

Register save

¥ of open files

Input device, normally 0

Dutput CMD device. normally 3

Tape character parity

Byte-received flag

Direct=$80/RUN;C output control

Tape Pass 1 error log/char butfer

Tape Pass 2 err log corrected

Jiffy Clock H M5

Serial bit count/ED] flag

Cycle count

Countdown, tape write/bit count

Tape bufter painter

Tape Write ldr count/Rd pass/inbit

Tp Wrt new biyte/Rd error/inbit count

Wrt ctart bit/Rdbit err/stbit

Tp ScaniCnt:Ld:End/byte assy

Wr lead length/Rd checksum/parity

Fainter: tape bufr, scrolling

Tape end adds/End of progras

Tape tiaing caonstants

Pntr: start of tape buffer

1=Tp tiser enablied: bit count

Tp EDT/RS232 next bit to send

Read character error/outhyte buf

characters in file name

Current logical file

Current secondary address

Current device

Pointer to file name

RS 232 Parity

% blocks remaining to Wr/Rd

Serial word buffer

Tape motor interiock

1/0 start address

Kernal setup pointer/ Cass. teap

Last key pressed

¥ chars in keybrd buffer

Screen reverse flag

End-of-line for input pointer

Input cursor log {row,coiven)

Which key: &4 if no key

0=flash cursor

Cursor timing countdawn

Character under cursor

Input from screen/irom kevboard

Pointer to screen line

Position of cursor on above line

O=direct cursor, else programmed

Current screen line length

Row where cursor lives

Last inkey/checksum/buffer

of INSERTs outstanding

46307

HEY

00D09-COF2

GOF3-00F 4

00F3-00F &

VOF7-00F8

O0FS-00FA

00FB-00FE

DOFF

010C-010A

0100-103E

0100-01FF
200-0258

0259-0262

0263-026¢

0240-0274

0277-0280

0281-0282

0283-0284

0285

e

0287

0288

0289

0288

0286

0280

0280

028E
28F-0290

0291

0292

0293

0294

0295-0296

0297

0298

0259-0254

0798

029

0290

029

029F-02R0

02h1

0202

0zAd

244

0285

02R6

02R7-02FF

0200-02FE

0201-0301

0302-0303

0204-0305

0306-0307

9308-030%

03940308

DECINAL

217-242
243-244
245-244
247-1248
249-250
201 -254
255
256-206
256-318
256-311
12-600
401-610
611-620
4Z21-430
03]1-640
b41-642
643-644
545
646
&47
646
649
650
45t
652
553
634
h35-636
657
458
659
580
bb1-662
563
bb4
b5
b67
668
849
670
871-672
673
674
675
674
b77
678
579-704
704-748
768-75%
770-771
n-m3
774-773
The-177
778-719

DESCRIPTION

Screen line link table
Screen culor pointer
Keyhoard gpainter

RS-232 Rcv Pntr

R5-232 Qut Pntr

FREE 00 Page space

BASIC work area

Floating to ASCII work area
Tape error log

Processor stack area

Basic tnput buffer

Logical file table

Device table

Sec Adds table

Keyhd buffer

Start of Basic Memary

Top of Basic Memory

Serial bus timeout tlag
Currept color code of crsr
Lolor under cursar

Screen semory page

Size of keybd buffer
Repeat all kevs

Repeat speed counter
Repeat delay counter
Keyboard Shift/Control flag
Last shift pattern
Keyboard table setup pointer
Keyboard shift aode
0=scroll enabie

/5-232 contral reg

RS-232 command reg

Bit timing

RS-232 status

bits to send

R8-232 speed/rode

R5232 receive pointer
RS2I2 input pointer

R5232 output pointer start
RS212 output pointer end
IRQ save during tape I1/0
CIA 2 (NMI) Interrupt Control
€A | Tiser A control lag
CIA | Interrupt Log

CIA 1 Timer A enabled flag
Screen row marker

40 Hertz ?

Urused

Sprite 11}

Error message link

BASIC wara start link
Crunch BASIC tokens link
Print tokens link LIST
Start new BASIC code link
Get arithaetic eleaent link

HEX

030C
030D

030E

036F
0310-0312
0314-0315
0316-0317
0318-0319
J31A-0318
031C-021D
031E-031F
0320-0321
0322-0323
0324-0323
0326-032
0328-0329
032A-032B
032C-0320
032E-012F
0330-0331
0332-0333

033C-63FB

0340-037E
0380-03BE
03C0-03FE

0400-077

07F8-07FF

0800-9FFF
8000-9FFF

AODO-BFFF
ROOO-BFFF

Co0D-CFFF

DOGO-DOZE
Da00-D41L
BRQO-DREF
DEOO-DCOF
DDOO-DDOF
BOOO-DFFF

EOOO-FFFF
E000-FFFF
FFBL-FFFS

(2}

DECIMAL DESCRIPTION

780 SYS A-register save

781 SYS X-register save

782 8YS Y-register save

783 8YS status register save

784-788 USR function jusp inst 8248
788-789 Hardware interrupt vector ERJI
190-191 Break interrupt vector FEbS
792-7%% WMI interrupt vector FE47
794-795 OPEN vector F34A
796-797 CLOSE vector F291
798-799 Set-input vector F20E
B800~801 Set-output vector F250
802-802 Restore 1/0 vector F333
B04-80% INPUT vector F1e7
806-807 Output vector FICA
808-809 test-ST0P vector F&ED
B19-811t GET vector F1IE
B12-B13 foort 1/0 vector FizF
814-815 Warm start vector FE&
Bl LDAD link F4RS
818-819 SAVE link FSED
B19-1019 Cassette buffer

932-894 (Sprite 13)

B94-958 (Sprite 18)

960-1022 (Sprite 15)

1024-2023 Screen aemory

2040-2047 Sprite pointers
2048-40959 Basic RAM aemory
12748-40999 Alternate RAM or ROM BAME CART.

40950-49151 ROM: Basic interpeter
40940-49151 Alternate RAM or ROM EXROM CART.

49152-33247 RAM mesory

53248-53294 Video Chip {6346}

54272-54200 Spund Chip 14381 5ID)
53296-54319 Color nybble meaary
56320-56335 Interface chip, IRB (6526 CIA}
36576-56591 Interface chip, NMI (8524 CIA
5I24B-53294 Alternate: Character set

57344-65535 ROM: Ogerating systea
S7344-45535 Alternate RAM
65409-45525 Jump Table, Including:

HEX

4000
A00OC
A052
A0BO
A080
AISE
R3I26
AZLS
RIBA
AZBB
RIFB
A408
A435
A437

ASY
A474

ALBO
A49L
AS33
AS&0
A379
hel?

Bb42
A6SE
A&BE
A6
AT42
A7ED
ABID
AB2E
AB2F
AB31

ABa7
RB71

A883
ABAG
AgD2
ABFB
A%0&
A928
A93B
A94B
A94B
AAS
RABO
ARBO
RARD
ABIE
AB3R
AR4D
AB7B
ABAS
ABBF
ABFY
ACOG
ACFC
ADIE

DESCRIPTION

ROM cantral vectors
Keyword action vectors
Function vectors
Dperator vectors
Keywor ds

Error messages

Error sessage vectors
Misc. messages

Scan stack feor FOR/GOSUR
Move meaory

Check stack depth
Check memory space
"Out of mesary’

Error routine

BREAK entry

'ready.’

Ready for Basic

Handle new line
Re-chain lines

Receive input line
Crunck tokens

Find Basic line
Perform NEW

Fertora {LR

Back up text pointer
Ferfors LIST

Ferfore FOR

Execute statement
Perfors RESTORE

Braak

Perfarm STOP

Parfors END

Perfarm CONT

Perfora RUN

Fer forn GOSUB

Ferfora 6070

Fertorm Return

Perfore DATA

Scan for next statement
Fertora IF

Pertore RER

Ferfora ON

Get fixed point nusber
Ferfors LET

Perfare FRINTH
Ferfora CMD

Perfaorm FRINT

Print string from f{y.a.)
Print format character
Bad input routine
Periare GET

ferfora INPUT#

Perfare INPUT

Frospt & anput

Perfara READ

Input error messages
Perfare NEXT

HEX

AD78
ADE
AEAS
AEF1
AEF7
AEFF
AF14
[
AFA7
AFES
AFED
AFO8
BOla
BOB1
BOBE
B113
B1{D
B194
BLAS
BiR2
BIDL
B245
B248
B4C
B370
B351
B39E
B3A&
B3B3
B3EL
B3F4
B463
8473
B4B7
BaF4
B526
B3RD
Bals
B&2D
B&7A
BoA2
BbDB
B&EC
E700
B72C
B737
B76%
B77C
R782
B78B
B798
B7AD
B7EB
BIF7
B8OD
BBZ4
582D

DESCRIPTION

Type aatch check
Evaluate expression
Constant - pi

Evaluate within brackets
))!

Coasa

Check range

Search for variable
Setup FN reference
Perform OF

Perfora AND

Syntax error

Compare

Perfore DIM

Locate variable

Check alphabetic
Create variable

Array pointer subrtine
Yalue 22768
Flpat~fixed

Set up array

'had subscript’
"illegal quantity
Compute array size
Ferforn FRE

Fix-float

Perfors POS

Check direct

Perforn DEF

Check fn syntav
Perfora FN

Perform STRY
Calculate string vector
Set up string

Make room for string
Barbage collection
Eheck salvageability
Callect string
Concatenate

Build string to aesory
Discard unwanted string
Clean destriptor stack
Per forn CHRS

Perform LEFTS

Perfora RIGHTS
Perforn HID$

Pull string parameters
Perfora LEN

Exit string-sude
Perform ASCT

Input byte parameter
Ferforn VAL

Paraseters POKE/WAIT
Float-fixed

Perforn PEEK

Perform FOKE

Fertorn WRLT

(3)

HEX DESCRIPTION

8843 Add 0.5

BE50 Subtract-from

B33 Ferfore [subtractl
B86A Perform [addl

B947 coeplesent FACR!
BITE ‘overflow’

B98I Multiply by zero byte
B9EA Perfore LDG

BAZB Perfors MULTIPLY
BASY? Multiply-a-bit
BABC Memory to FACH2
BAB7 Adjust FACHI/#7
BAD4 tnderflow/overflow
BAEZ Multiply by 10
BAFS +10 in floating pt
BAFE Divide by 10

BB12 Perfarm [dividel
BBAZ Meamory to FACH]
BEC7 FACH! to memory
BBFC FAC#Z to FAC#1
BCOC FACH! to FAC#2
BCIB Round FACHI

BC28 Get sign

BC39 Perform SEN

BCSE Perfarm ABS

BCSB Compare FACH to aem
BCYB Float-fixed

BCCC Perform INT

BCFZ String to FAC

BD7E bet ASCIE digit
BDCZ Print *IN'

BDCD Frint line number
BDDD Float to ASCII
BF14 Decimal constants
BFIA TI constants

BF71 Perforsm SOR

BFTB Perifore {powerl
EFB& Perform [negative)
BFED Perfors EXF

COO0-CFFF Protected Raa

DESCRIPTTON

NOS &5hb VIDED INTERFACE CONTROLLER (VIC)

Sprite 0 X pasition

Sprite 0 Y position
Sprite 1 X gositian
Sprite 1 Y position
Sprite 2 X pasition
Sprite 2 Y position
Sprite 3 X position
Sprite I Y position
Sprite 4 X position
Sprite 4 Y position
Sprite 3 X position
Sprite 5 Y position

Sprite & X position

Sprite & Y position

Sprite 7 X position

Sprite 7 Y position

Sprites 0-7 m.s.bit of X-coord.
VIE Control Register

Read Raster/Write for coap. IRG
Light-pen latch X-position
Light-pen latch Y-position
Sprite Display enable

VIC Control Register

Sprites 0-7 expand 2ivertical
YIC Nemory Cantrol Register

VIC Interrupt Flag Register

IR0 Nask Reqister

Sprite to Bkground Display Prty
Sprites 0~7 Nulti-color mode sel
Sprites 0-7 Expand Zthorizontal
Sprite to sprite Collision Detect
Sprite to Background Collis. Det.
Border color

Background color 0

Background color |

Background color 2

Background color 3

Sprite Multicolor register 0
Sprite Multicolor register |
Sprite 0 color

Sprite 1 color

Sprite 2 color

Sprite 3 color

Sprite & tolor

Sprite I color

Sprite & color

Sprite 7 colar

K0S 4581 SOUND INTERFACE DEVICE (SIDY

HEX DECIMAL
2000 33248
1001 53249
Dog2 33250
D003 53254
DoO4 33282
D005 33253
D004 53254
0007 53255
Boog 33256
0009 53257
DOOA 33258
D008 53259
Dooc 53260
B00D 53261
DoOE 53262
DOOF 53263
010 33264
1ot 53265
Dotz 33266
0eid 33267
fota 33248
D015 35269
Dots 33270
bot7 33271
D018 33212
bo1¢ 33273
DolA 53274
101B 32275
poic 33276
botp 33277
DOIE 33278
DOIF 33279
2020 53280
0021 33281
Doz2 33282
0023 53283
D024 33284
0025 93283
D024 53286
1027 33287
no28 53288
0029 53289
0024 33290
B028 53291
Doze 33292
poz2p 33293
DO2E 33294
D400 54272
LE 54273
D402 4274
0403 34275
D404 34276
D405 54277
D408 34278
n4Q7 54279
D408 54280

Voice l:Frequency control--Low
Voice i:Frequency coat.--High
Voice 1:Pulse Wavefora didth--Lo
Yoice 13 °© " * —-High
Voice t:Control Register
Envelope Generator 1:Attack/Decay
Envelope benerator !:Sustain/Rel
Voice 2;Frequency--tow Byte

Voice Z:iFrequency-High Byte

(4)

HEX DECIMAL DESCRIPTION

D409 4281 Voice 2:Pulse Waveform-Low Byte
D40A 34282 Voice 2:Pulse Waveform-High

D4oB 547283 Voire 2:Control Register

D4oE 54284 Envelope Generator 2:Attack/Decay
o400 24285 Envelope benerator 2:Sustain/Rel
D4OE 34286 Voice 3:Frequency--Low Byte

D4OF 54287 Voice 3:Freguency-High Byte

D410 34288 Voice 3:Pulse Waveform--Low Byte
D411 54289 Voice 3:Pulse High Nybble
D412 34290 Voice 3J:control Register

D413 54291 Envelope benerator 3:Attack/Decay
D414 54292 Envelope benerator 3:Sustain/Rel
D413 54293 Filter cutoff Freq:Low Nybble
D418 34294 Filter cutoff Freq:High Byte

D417 54295 Filter Resonance/Voice Input Ctrl
D418 54296 Select filter Mode and voluame
D419 34297 Analog/digital Converter:Paddle !
D4lA 54298 fAnalog/digital conv;Paddle 2

Da1B 54299 Dscillator 3:Randos Number Ben
D4iC 34300 Envelope Generator T Qutput

D500-D7FF 54528-55295 SID IMAGES
DB0O-DBFF 55296-56119 Color RAM
MOS 4526 COMPLEX INTERFACE ADAPTER (CIA) B1

DG 36320 Data Port A Joystick 2

dCol 56121 Data Fort B joystick 1

0Co2 36322 Data Direction Reg:Port 4
pCoz 56323 Data Direction Reg:fort B
DCO4 36324 Timer A:Low Byte

bCos 5632 Timer A:High Byte

HCos 36326 Timer B:low Byte

Loy 5632 Timer B:High Byte

bCo8 56328 Time-of-Day Clock:1/10 Sec
DCO9 5632 Time-of -Day Clock:Setonds
DCoA 56330 Time-of~Day Clock:Minutes
DCOB 54331 Tise-pf-Day Clock:Hrs & AM/PM
pcoc 56332 Synchronous Serial 1/0 Buffer
IToD 56333 CiA Interrupt Contro) Reg
DCOE 56334 C1A Contrai Register A

DCOF 56335 ClA Control Register B

MOS 6526 CONPLEX INTERFACE ADAPYER(CIA)#2

iy 56576 Data Port AtSerial Bus,RS-232
noel 36577 Data Port BlUser Port,RS-232)
pDO2 54578 Data Direction Reg:Port A
0003 36579 Data Direction Reg:Port B
D004 56580 Timer AiLow-Byte

BpOs 38381 Tiaer AtHigh Byte

DD0& 54582 Timer B:Low Byte

DBo7 56583 Tiser B:High Byte

ooes Sh584 Time-of-Day Clock:1/{0 Sec.
DDog 34383 Tiae-of~Day Clock:Seconds
bhoA 26586 Time-of-Day Clock:Minutes
008 56587 Time-of-Day Clock:Hrs k AK/PN
0Doc 36088 Synchranous Serial [/0 Butfer
Dood 36389 CiA Interrupt Cont, Register
DDOE 36590 CIA Control Register A

DBoF 36591 CIA Control Register B

DEOU-DEFF GAB3Z-57087 RESERVED FOR FUTURE 1/0 EXPAN
DFOO-DFFF 57088-57347 RESERVED FOR FUTURE 1/0 EXPAN

