chker J ax

:m:mmn-mmm

K J. REVEALED | & Il

I NTRO : SCHEME TYPE A
TAPPER

BUCKAROO BANZA|
SARCON |1l CHESS

THE SLUGCGER

ROGUE TROOPER

I NTRO : SCHEME TYPE B
TI TLE BOUT

SUPERBOAL SUNDAY
GULFSTRI KE

CREATI VE CONTRAPTI ONS

I NTRO : SCHEME TYPE C
COUNTDOWN TO SHUTDOWN
VEB DI MENSI ON

FI REWORKS CELEBRATI ON
RINGS OF ZILFIN
TITANI C

ROCKY HORROR SHOW

TRI O

ALl ENS

TRANSFORMERS

I NTRO : SCHEME TYPE D
| MPCSSI BLE M SSI ON |
BREAK DANCE

PI TSTOP 11

BODY TRANSPARENT

I NTRO : SCHEME TYPE E
I NFI LTRATOR |

BOP ' N WRESTLE

PRI NT SHOP COVPANI ON
BANK ST. SPELLER
EXPRESS RAI DER
BREAKTHROUGH

I NTRO : SCHEME TYPE F
ARTI ST 64

COLOSSUS CHESS
COVPUTER SCRABBLE
FALKLANDS 82

TABLE OF CONTENTS

Pg
Pg
Pg
Pg
Pg
Pg
Pg

Pg
Pg
Pg
Pg
Pg

Pg
Pg
Pg
Pg
Pg
Pg
Pg
Pg
Pg
Pg

Pg
Pg
Pg
Pg
Pg

Pg
Pg
Pg
Pg
Pg
Pg
Pg

Pg
Pg
Pg
Pg
Pg

K. J. REVEALED TRI LOGY

P O0~NPAWW

P

15
16
18
19

21
22
24
27
30
32
34
36
39
41

43
44
45
47
49

50
51
53
55
56
58
61

64
66
68
70
72

PAGE [2]

I NTRO : SCHEME TYPE G
LEADERBOARD

EXECUTI VE LEADERBOARD
LBOARD TOURNAMENT DI SK
TENTH FRAME

RAPI DLOK REVEALED

RAPI DLOK FORVAT

KJ RAPI DLOK COPI ERS

I NTRO : SCHEME TYPE |
GECS vl .3 TRQJAN HORSE
GECS vl . 2

DESKPAK |

DEEP SPACE
GRAPHI CS I NT. | |
K. J. REVEALED |11

GECS 2.0

SNAPSHOT GECS 1.3 & 2.0

DEATH SWORD V1/V2
RAD WARRI OR
SPI DERBOT

TRACKER

STARGLI DER

VWAF VWRESTLI NG

MAVI S BEACON TYPI NG
1942 V2 & CGHOSTS & GOB
L. A CRACKDOMN

V- MAXI V1. ?

I NTO THE EAGLE' S NEST
PAPERBOY

XEVI QUS

PROTECTI ON SCHEME # 1
PROTECTI ON SCHEME # 2

HACKER S UTILITY KIT
HES MON | NSTRUCTI ONS
EOR TRUTH TABLE

ML MONI TOR COMVANDS
DI SK DR. COMVANDS
BOOKS -
LI M TED WARRANTY

(C) 1990 K. J.P. B.

Pg
Pg
Pg
Pg
Pg
Pg
Pg
Pg

Pg
Pg
Pg
Pg

Pg
Pg

Pg

Pg
Pg

Pg
Pg
Pg

Pg
Pg
Pg
Pg
Pg
Pg

Pg
Pg
Pg
Pg

Pg
Pg

Pg
Pg
Pg
Pg
Pg

FURTHER READI NG pg

Pg

74
77
79
82
84
87
88
92

94
95
95
98

100
101

104

106
112

114
116
118

120
123
126
127
129
130

134
135
137
139

141
145

| NTRODUCTI ON

Thank you for your purchase of the Kracker Jax Reveal ed Tril ogy.
The Trilogy is a conpilation of our three separate Kracker Jax
Reveal ed books, Volunes 1 - 3. These books were individually
rel eased over a period of two years, and represent countless hours
of investigation.

W' ve condensed Vol umes One and Two into one book, while Vol une
Three continues to be a separate book. Al are included with your
purchase of the Tril ogy.

The Kracker Jax Reveal ed series represents the best conpilation
of this type of material ever assenbled. The 3 Vol unes were put
together froma nountain of raw data that was the end result of
years of hands on experience by people who were nasters of the
craft of unlocking the nysteries of copy protection

I nsi de these pages, you'll find the know edge that will give you
the power to take conplete control over your software. The step by
step instructions and detail ed explanati ons have all been designed
to pass along years of practical experience to you in a very short
amount of time. Once you' ve finished the Revealed Tril ogy, you may
want to read other similar material. You'll find our specific
reconmendations |isted under "Books For Further Reading" in the
Table O Contents.

The path to know edge is a rewardi ng one. W hope you enjoy the
j our ney.

K.J. REVEALED TRILOGY PAGE [I] (01990 K. J. P. B.

KRACKER JAX REVEALED 1 & 2

I NTRO : PROTECTI ON SCHEME TYPE A

Omners of the 1541 disk drive may not realize it, but every tine
they boot their favorite programand it bangs the disk drive head,
that programis using this formof protection. It is conmon

know edge al ong experienced users that this formof copy protection
is hazardous to the health of the 1541 drive. Let's face it: would
YOU wite a programthat purposely banged YOUR disk drive's

read/ wite head against it's end stop?

This protection is still being used by many software publishers,
knowing full well that the drive knock is probably the nmajor source
of alignment problems with the 1541/1571 disk drives. W at Kracker
Jax can't see any purpose in the continuation of this form of
protection.

Sure, you can back up your software with al nbst ANY nybbl e

utility on the narket. The problemis that the backup is ALSO
protected and will bang the drive as well. It is this protection
type that we especially urge you to learn to break, just so you can
preserve the alignment of your disk drive.

The operation of this scheme is sinple. The programrer wites a
routine in the program (generally in the boot) to seek out a
non-standard sector on the disk. If that non-standard sector is
found, the drive will usually bang, and the programwill continue
operations. If not, the programwll cease to operate or "crash"
These non-standard sectors are generally wite errors, and are
documented in your 1541/1571 drive manual. The lost comonly used
are the follow ng:

20: Bl ock header not found | drive banger

21. sync character not found | sector not formatted properly |
drive banger.

22: Data block not present | drive banger
23: Checksumerror in data | very common | drive banger

26: Attenpt to wite with wite protect on | some prograns check
for the wite protect | no drive bang.

27. Checksumerror in header | drive banger.

29: Disk ID mismatch | whole track formatted with wong ID
characters | no drive bang.

K.J. REVEALED TRILOGY PAGE [3] (01990 K. J. P. B.

Many of the programs using this schene are checking the
protection with sinple drive conmands and the kernal routines in
the conputer ROM Keep in mind that this check can be done with
Basi ¢ progranmi ng as well as machi ne | anguage. Once under st ood,
nost are fairly easy to unprotect.

Most of the time the programmer will check for the bad sector

with a block read. It will look sonething like this: U:aa bb cc
dd, or B-R aa bb cc dd. The aa denotes channel, bb denotes drive
nurmber, cc denote track, and dd denotes sector. A character or two
is then returned fromthe drive, and a conparison is nade. If the
conparison is satisfactory, the program continues operation. |f
not, the programflowis ended or set in an endl ess |oop. Qur task
will be to either give the programthe proper characters, or to
short circuit the program flow around the protection check

Before starting to work on any of the follow ng prograns, please

do a disk log, an error scan, noting all wite errors, and make a
C-64 Fast Copier backup which will renove all errors. Place a wite
protect on the original disk.

TAPPER : BALLY N DWAY
Pr ocedur e:

Loading the original produces a drive rattle twice. An error

scan shows write errors on the original. A backup nade with Three
M nut e Backup produces a non-working copy. Before starting to work
on this program make two backup copi es.

wor ki ng with your backup

1) In order to look at the boot with our nonitor, we nust change
its location in nmenory. The reason for this is because this boot
cannot be stopped once it has been started. This is a sinple
procedure. Fromyour utility disk, load DI SK DR <> LOAD'DI SK
DR', 8,1 <>. \WWen the cursor reappears type RUN and hit RETURN.
Renmove the utility disk and insert one of your Tapper backups in
the drive. Ht RETURN again and you will be shown Track 18,
Sector 1. Cursor over to position 3 and hit the J key. This wll
take you to the first sector of the Boot file. The first four
bytes in this sector are the pointer bytes. Bytes 0 and 1 are
the pointers denoting this as the only sector and the nunber of
bytes used in this sector. Bytes 2 and 3 are the program address
bytes in reverse order. Place the cursor over the byte in
position 2 and hit the @key. Now, type a 1 and hit RETURN. The
cursor should now be on position 3. Again hit the @key and type
an 8 and hit RETURN. To make the changes on the backup, hit the

K.J. REVEALED TRILOGY PAGE [4] (01990 K. J. P. B.

C key and hit RETURN. The sector is now changed on the disk. W
have just changed the boot address to $0801, which places it in
Basi ¢ menory. The boot will not run properly , but we may | oad
and exanine it.

2) Turn your conputer off and insert the reset button assenbly into
the cartridge port. Turn on the conputer and | oad the $8000
nonitor fromthe utility disk <> LOAD "32768",8,1 <>. Type SYS
32768 and hit RETURN. Wth the nonitor active, place the altered
backup in your drive and |oad the boot file <> L "BOOI", 08 <>,

di sassenbl e code at $0801 (D 0801) and scroll down through the
code. The code from $0838 to $0853 is a | oader routine that
loads in the file LOADER and then junps to $CO00. This gives us
the informati on we need to trace the programflow Take this
backup out of the drive and put the other backup in its place.
(Renenber, we altered the boot file on this backup.)

3) Load the LOADER file <> L "LOADER' ,08 <>. \When the load is
conplete, interpret nenory at $C000 (I CO00). Scroll down

t hrough the code watching the I eft hand screen. At address $d A3
you'll find the block read comand U 2,0,32,8. This is the
command to read Track 32 Sector 8. Qur error scan has shown a 21
error in this location. Now |l et's disassenble and | ocate the
protection code.

4) This protection scheme is witten as a series of JSR (GOSUB in
Basi c). Renenber each JSR ends with a RTS (RETURN). Code will be
expl ained in segnments. Try to follow the program fl ow.

A] Starting at $CO00 i n the DI SASSEMBLE node, scroll down to
$C017 : JSR Cl16.

B] Disassenble $C116 : JSR d 4B.
C] D sassenble $C 4B : JSR C172.
Dl Disassenble $C172 : COpens a channel to the drive then RTS.
E] Disassenble $CI4E : JSR C188.

F] Disassenble $C188 : Sends Bl ock Read conmand to the drive
t hen RTS.

D sassenbl e $C151 : JSR d AF.

H Disassenble $C AF : Inputs two characters fromthe error
channel and stores themat $d CA and $d CB then RTS.

I] Disassenble $C154 : The accunul ator is |loaded with the error
character placed in $0 CA and conpared with a $32. The

K.J. REVEALED TRILOGY PAGE [5] (01990 K. J. P. B.

accumul ator is then loaded with the error character placed in
$d CB and conpared to a $31. This is the hexadeci nal

equi val ent of a 21 error ($322, $31=l). Notice that if both
conpari sons ARE equal, the accunulator is loaded with a 0, if
not, it's loaded with a 1, then a RTS

J) Disassenble $C119 : The accunul ator is conpared with 0, and
if equal a branch to $Cl27 occurs. To see what happens, type
G C127 and hit RUN STOP- RESTORE. Code was transferred to the
$8000 area of nenory and was activated by the RUN STOP -
RESTORE. You'll have to turn of f the conputer and rel oad the
nonitor and the LOADER file again.

K) Disassenble $AIB : Increment $C AB (increnents the track of
the Block Read to 33).

L) Disassenble $AIE : Increnment $C AB (increnent the sector of
the Block Read to 09).

M Disassenble $C120 JSR C4B Goes back through the error
check routine once again but now the 21 error at Track 33,
Sector 9 is checked (the second drive rattle). This tine if
the code is not branched to the nessage screen as before, it
will return back to $CO A to resune normal | oadi ng.

N) This programcan be broken in many different ways. Three will
be given.

1) Place three NOPS at $C017 (EA EA EA). This will erase the
code that sends the programto the protection check in the
first place (our choice). The programw ||l never do an
error check.

2) Place a BNE at $C119 and $Cl124 (Do). This will instruct
the programto operate in an opposite fashion in regards
to the protection, in other words, crash if an error is
f ound.

3) Place a $30 at $C162 and $C169. This will instruct the
programto expect NO error at the Block Read | ocations.
Again, if an error is found, the programw Il crash.

O Choose one of the above nethods and nmake your changes using
the MEMORY comand. After the change is nade the LOADER file
may be scratched and saved. Checking the disk | og shows us
the start address of $CO00 and the end address of $C2BC.
Renmenber to add one byte to the end address
<> S "@: LOADER", 08, COO0O, C2BD <>.

Your backup is now broken and will never rattle the drive again.

K.J. REVEALED TRILOGY PAGE [6] (01990 K. J. P. B.

Anot her benefit of this particular break is the fact that now you
may file copy this program

BUCKAROO BANZAI : ADVENTURE | NTHRNATI ONAL
Pr ocedur e:

Loading the original produces a drive rattle early in the |oad.
An error scan shows wite errors on the original. A backup nade
with the C 64 Fast copier produces a non-working copy.

wor ki ng with your backup

1) The disk Iog shows us that the boot file SAGA resides in Basic
menory, so let's begin by | oading the boot and exanmining it

<> LOAD "SAGA",8: <>. List it out and notice it loads the file
SAGA. OBJ and does a SYS to 4863 ($1300).

2) Turn your conputer of f and insert the reset button assenbly.
Turn the conputer on again and, fromyour utility disk, |load the
$C000 nonitor <> LOAD "49152",8,1 <> Wuen the load is conplete,
sys the nonitor in with SYS 49152. Now | oad the SAGA. OBJ file
from your backup, and follow the program fl ow

<> L "SAGA OBJ",08 <> Start your disassenbly at $1300 (D 1300).
W will break the code down into sections for you. Try to follow
al ong and i nspect the code as we go through it.

A) $1300-$1323 Loads the SAGA C64 file.

B) $1324 : Does a JSR to $137A which IS the protection check
routine.

C) $137A-8I3BE (Qpens the error channel to the drive and sends
the Bl ock Read command to check Track 34, Sector 4. Interpret
nenory at $13BF to see the U (I 13BF). Then a junp to $13CE
i s taken.

D) $13CE-$I3FE : Two bytes are received fromthe error channe
and stored at $1556 and $1557. Then a check of these two
addresses for the proper error bytes is done. The bytes are
conpared to $32 (2 in decimal) and a $31 (1 in decinmal).
These bytes correspond to a 21 error in decimal. |If the
conparison is incorrect, the program branches to $I3FF. Do a
GO 13FF (G 13FF) to see what happens. (You'll have to rel oad
your nonitor and SAGA.OBJ file again). If the conparison is
correct, the programcontinues along until it encounters the
RTS at $13FE. This will branch the code back to $1327, and
the programload will continue.

K.J. REVEALED TRILOGY PAGE [7] (01990 K. J. P. B.

3) This protection scheme is fairly sinple, and extrenely easy to
defeat. Four different nethods will be given to break this
title. Choose one and nmake your changes with the MEMORY conmand.

A) Place three NOPs at $1324. This will erase the JSR to the
protection routine. The programw ||l never even | ook for
protection now (our choice).

B) Place an $FO at $13E9 and $13F0. This will tell the program
to fail if an error IS found.

C) Replace the code at $13E3 with A9 32 EA (LDA 32 EA) and the
code at $13EA with A9 31 EA (LDA 31 EA). This loads the
accunul ator with the correct bytes the protection check is
| ooki ng for.

D) Change $13E6 froma $32 to a $30 and $I3ED froma $31 to a
$30. This tells the programto look for NO error ($30=0 in
decinmal). The programwi |l crash if an error is found.

4) After your changes are nmade, all that is left is to save the
code back to your backup. The disk log tells us the file resides
from $1300 to $1575. Be sure to add one byte to the end address
<> S "@: SAGA. OBJ", 08, | 300, 1576 <>.

Your backup is now free fromthe restrictions of copy
protection. It will no |onger bang your drive head and can even be
file copied. This schene can be found in approxinately this formin
many di fferent prograns. Don't be surprised if you see it again.

SARGON ||| CHESS : HAYDEN SOFTWARE
Pr ocedur e:

Loadi ng the original produces a drive rattle twice at the end of
the load. An error scan shows wite errors on the original. A
backup made with the C 64 Fast Copi er produces a non-working copy.

wor ki ng with your backup

1) Turn the conputer off and insert the reset button assenbly into
the cartridge port. Turn the conputer back on and from your
utility disk, load the $8000 nonitor <> LOAD "32768",8,1 <>. Sys
the monitor in with SYS 32768. Place your backup in the drive
and |l oad the boot file <> L "SARGON | I1",08 <> Start your
di sassenbly of code at $02A7 (D 02A7). The code from $02A7 to
$02F2 | oads the COPYRIGHT 1984 file in and junps to $COO0O

K.J. REVEALED TRILOGY PAGE [8] (01990 K. J. P. B.

2)

A)

B)

@)

D)

E)

F)

©)

J)

3)

Load the file COPYRI GHT 1984 <> L "COPY*",08 <>. W will explain
the code a section at a time, so try to follow as we go through
it. Using the DI SASSEMBLE comrand, di sassenble nmenory begi nni ng
at $CO0O (D ©000) .

Di sassenbl e $CO00 : $CO00- $C091 sets up a | oader routine that
| oads HAYDEN SOFTWARE and JUMPS to $C311.

Di sassenbl e $C311 : $C311-C336 opens an error channel to the
drive and sets the Y register to O.

Di sassenbl e $C337 : JSR $C376.

Di sassenbl e $C376 : $C376- $C389 sends Bl ock Read command to
Drive to check Track 2, Sector 15. The address $C2F7,Y is
accessed. Since Y has been set to 0, the true address |IS
$C2F7. Interpret menory at $C2F7 to see the B-R (I C2F7).
This subroutine returns when an RTS i s encount ered.

Di sassenbl e $C33A : JSR $C38A.

Di sassenbl e $C3BA : $C38A- $C3A0 i nputs two bytes fromthe
error channel and conpares it to a $30 (0 or no error in
decimal). If NO error is found, a branch to $C373 is taken.
This in turn junps to a reset vector and the program Crashes.
If errors are found, the programflows until the RTS is
encount er ed.

Di sassenbl e $C33A Loads the Y register with OD (13 in
deci mal).

Di sassenbl e $C33F : JSR $C376 : Sane as step D, except this
tinme the address $C2F7, OD ($C2F7+0D) is sent to the drive.
This address is the same as $C304 and is the B-R command for
Track 3, Sector 16 (I C304).

Di sassenbl e $C342 : JSR $C3BA : Sane as step f. Checks for
error and RTS if found.

Di sassenbl e $C345 : Close all channels and files; continue
setup and junp to start of program

This protection schene is fairly sinple and can be defeated in
many ways. Four will be given. Choose one, and nake your changes
with the MEMORY command. When the change has been nade, all that
is left is to save the file back to the disk. The disk log tells
us the file resides in nmenory from $CO00 to $C3A2. Renenber to
add one byte to the end address when you save it

<> S "@: COPYRI GHT 1984", 08, C000, C3A3 <>.

K.J. REVEALED TRILOGY PAGE [9] (01990 K. J. P. B.

A)

B)

@)

D)

Af t

Change the address $CO8F from 4C 11 C3 (JHP C311) to 4C 45 C3
(JMP C345). This will junp the program flow conpletely around
the protection check (our choice).

Change $C33A and $C342 from 20 8A C3 (JSR C38A) to EA EA EA
This will erase the JSR to the error check.

Change $C397 from FO OA (BEQ reset address) to EA BA. This
will erase the branch to the crash and the programflow will
be forced to continue on.

Change $C395 fromC9 30 (CWMP 30) to C9 32. This will force
the programto crash if an error IS found.

er your changes are nadel you will have a conpletely broken

copy that can be fast copied and even file copied.

THE SLUGCGER : NASTERTRON CS

Pr ocedur e:

Loading the original produces a drive rattle. An error scan
shows wite errors on the original. A backup nmade with the C 64
Fast Copi er produces a non-wor ki ng copy.

Wor

1

2)

3)

A)

B)

king wi th your backup:

Checking the disk | og shows us the boot file is in Basic nmenory
so let's start by loading it <> LOAD "THE SLUGGER', 8: <>. List
it and exanine the loader. It loads various files and then does
a SYS 514 ($0202). The disk log again tells us the address $0202
is the start of the GOFILE file.

Turn the conmputer off and install the reset assenbly into the
cartridge port. Turn the conputer back on, and fromyour utility
di sk, load the $2000 nmonitor <> LOAD "8192",8,1 <> Sys it in
with SYS 8192. Now from your backup, |oad the GOFILE file

<> L "GOFILE",08 <>. Start disassenbly at $0202 (D 0202). Scroll
down through the code and notice that this file | oads the CODE
file and Junps to $0340.

Fromt he backup, load the CODE file <> L "CODE", 08 <>. Start
di sassenbly at $0340 (D 0340). The disassenbly is given in the
sections below. Try to follow along as we go through it.
$0340- $036A : Opens the error channel to the drive.

$036B- $037D : Sends U (Bl ock Read) conmand to the drive to

K.J. REVEALED TRILOGY PAGE [I0] (01990 K. J. P. B.

@)

D)

E)

4)

A)

B)

©)

D)

5)

read Track 6, Sector 7. Use the | NTERPRET command to see the
u (I 03E3).

$037E- $0385 Set up to read two bytes fromthe error
channel

$0389-3$0396 : Inputs a byte fromthe error channel and
conpares it toa $32 (2 in decimal). Another byte is
retrieved and conpared to a $33 (3 in decimal). Each conpare
results in a branch to a crash address if not satisfied.

O herwi se the program flow continues on to a Junp to $03A1
These conpares are the 2 and the 3 of a nunber 23 error. The
error scan confirns a 23 error at Track 6, Sector 7.

$03Al - $03A8 : Close error channel and normal program flow
cont i nues.

The break in this programis fairly sinple. Four different

met hods wi Il be given. Choose one and nmake your changes with the

MEMORY conmand.

Change $0340 to 4C AB 03 (JUMP $03AB). This will cause the
programto junp conpletely around the protection check (our
choi ce).

Change $038D and $0394 to $30. This will instruct the
protection check to I ook for NO error ($30=0 in decinmal).

Change $038E and $0395 to $FO This will cause the protection
to branch to the crash if an error IS found.

change $0389 to A9 32 EA (LDA 32) and $0390 to A9 33 EA (LDA
32). This will load the accunmulator with the bytes it wants
in the conpares. The bytes will not be input fromthe error
channel

Wien your changes are made, all that's left is to save themto

t he backup. The disk |og supplies the start and end addresses.

Be
<>

sure to add one byte to the end address
S "@: CODE", 08, 0340, 0401 <>.

Your backup is conpletely broken and may be file copied to
anot her di sk.

ROGUE TROOPER : UXB

Kracker Jax Reveal ed Book one dealt with this schene in four

dif

ferent prograns. W have included this one title because this

K.J. REVEALED TRILOGY PAGE [I1] (01990 K. J. P. B.

exact protectionis alitte tricky and has been found on quite a
f ew prograns.

Pr ocedur e:

Loading the original produces a drive rattle. An error scan

shows nmassive wite errors on the original. A backup made with the
C- 64 Fast Copier produces a non working copy. Before starting to
work on this program do a disk log and an error scan to determ ne
error type and | ocation

wor ki ng vith your backup

1) Let's start by plugging Hesnmon in the cartridge port and
powering on. Insert your backup in the drive and | oad the boot
file < LOAD'UXB",8,1 > . Fromthe disk log we can determ ne that
this file begins at menory | ocation $032C. Start di sassenbly at
$032C < D 032C > . Cursor down through the code. This code opens
channels to the drive and | oads a one character file name at
$035B. If you Interpret nenory at $035B < | 035B > you'll find
the file nane X. After the load, a junp to $08B0 is taken

2) Load the X file into nenory < LOAD'X" ,8,1 > . Begin disassenbly
at $OBBO. The following is an explanation of the programflow.

D $08B0 : JSR 081E

D $081E : $081E-$0841 opens an error channel to the drive
< | E260 > and does a JSR back because the JUWP to
$FFCO is a kernal routine and always ends with a
JSR.

D $08B3 : JSR 0844

D $0844 : Sends a U (Block Read) command to the drive from
an encrypted form The code from $084E- $085D decrypts
and sends the U.

D $0868 : JSR FFA5 : Inputs a byte fromthe serial port.

D $0872 : CMP 081A ($32 or the 2 in a 23 error).

D $0874 BNE crash.

D $0877 : JSR FFA5 : Inputs a byte fromthe serial port.

D $087A : CWP 081D ($33 or the 3 in a 23 error).

D $087C : BEQto a JSR which closes channels and RTS back to
$08B6. Ot herwi se the programflow falls through to a
crash.

3) There are many ways to break this title. Three will be given
Make all your changes using the Menmory conmand and then resave
the file to the backup as < S "@: X* OB 0801 0977 >

A) Place 3 NOPs at $08B3 over the JSR to $0844. This will cause
the programto not even check protection

K.J. REVEALED TRILOGY PAGE [I 2] (01990 K. J. P. B.

B) Place a 30 at $OBl A and at $081D. This will allow the drive
to send back an OK condition and pass protection because we
will now be conparing to NO error

C) Place a 60 (RTS) at $0844 which will cause the routine that
checks protection to be short circuited.

Wien your changes have been made, this title nay be file copied.

I NTRO : PROTECTI ON SCHEME TYPE B

This protection scheme has all owed software publishers a neans

of protecting their prograns fromthe finest nybblers on today's
market. It enploys a |l oader that resides in RAM at $COO0. This

| oader does the protection check and then proceeds to gather a
Basi ¢ boot fromthe programdisk. This boot is placed in RAM at the
begi nni ng of Basic ($0801-). Qur task in each of these schenes will
be to let the original disk pass protection and then place the boot
in nenory. At this point we can retrieve the boot and fromthen on
use it to load our back-up, |eaving the protection check conpletely
behi nd.

Before starting, you nust understand the way a Basic programis

pl aced in nenory and how the pointers affect it. The reason for

this is that nost of the tinme upon reset, the beginning pointers
will be destroyed and we will have to repair them ourselves

The pointers used by Basic are very specific, and if not

correct, the Basic programwi |l fail to operate properly. To show
you how a Basic program|ooks in nmenory, let's inspect the exanple
on your work disk.

First, load the $0000 nonitor fromyour Utility disk

<> Load "49152",8,| <> and sys it in by typing SYS49152 and
hitting RETURN. You should be in the nonitor now so | oad again
fromyour work disk the file called BASI C EXAMPLE

<> L "BASI C EXAMPLE", 08 <>. After the |oad, exanine nmenory from
$0801- $0890 (M 0801) Scroll up and down through the code. You
shoul d be | ooking at the sane code as shown bel ow. Pl ease note
that the exanple below has all pointer bytes underlined for ease
of view ng.

K.J. REVEALED TRILOGY PAGE [I 3] (01990 K. J. P. B.

: 0801 OE 08 05 00 99 22 93 11
:0809 11 11 OG5 22 00 35 08 OA
:0811 00 99 22 20 20 20 54 4B
: 0819 49 53 20 49 53 20 41 4E
10821 20 45 5B 41 4D 50 4C 45
10829 20 4F 46 20 46 4F 57 2D
: 0831 41 20 22 00 5A 08 14 00
:0839 99 22 20 20 20 42 41 53
10841 49 43 20 50 52 4F 47 52
: 0849 41 4D 20 49 53 20 46 4F
:0851 52 4D 41 54 45 44 20 22
: 0859 00 84 08 1E OO 99 22 2D
10861 20 20 49 4E 20 54 48 45
10869 20 4D 45 4D 4F 52 59 2D
10871 4F 46 20 54 48 45 20 43
10879 4F 4D 4D 4F 44 4F 52 45
: 0881 2E 22 00 00 00 FD BD FF
: 0889 DO FF FF E6 FF FE 00 00

The format of Basic is as follows. Starting at $0801, the bytes
CE 08 denote the placenent of the next Iine nunber in nenory in
reverse order ($080E). The next two bytes, OS 00 denote the current
line nunber in reverse order ($0005=5).

Fol l ow the bytes fromhere until you get to the next 00. This
byte (residing at address $080D) denotes the end of the first line
in this program The next four bytes are again the pointers for the
second line in our Basic program The address $080E and $080F
contain the bytes 35 08. These are the address of the next |ine
nunmber in our program again in reverse order ($0835). The next two
bytes starting at $0810 are OA 00 which is the current |ine nunber
of our program again in reverse order (OOQA=QA in hex or line 10
in decimal). This format is followed all through any nornmal Basic
program and ends only when three hex zeros are encountered (00 00
00). This tells Basic that the prograns end has been found. You'l
find these bytes in our exanple starting at $0883.

This means that this program could be saved with your nonitor
usi ng the addresses from $0801- $0885. The $0801 bei ng the begi nni ng
of Basic and the $0885 the last of the three zero bytes. The actua
save conmand woul d be <> S "FI LENAHE", 08, 0801, 0886 <>. W used the
end address $0886 because all nonitor saves need one extra byte
added to the actual ending address ($0885+l =$0886).

By understanding the structure of Basic, we can now repair any
damage done to our pointers when we reset out of our program | oads.
Now |l et's nove on to our exanple prograns.

K.J. REVEALED TRILOGY PAGE [I4] (01990 K. J. P. B.

TITLE BOUT : AVALON HI LL

Loading the original produces a rattle free |oad, and an error
scan shows no standard errors. A backup nmade with the C 64 Fast
Copi er produces a non-working copy. A backup made with a nybbl er
al so produces a non-working copy. Before starting to work on this
program pl ease nmake a non-worki ng backup of the original

Wor ki ng with your backup

1) Start by validating the BAM <> OPEN 5, 8, 15, "V": CLCSEI 5 <> to
make roomfor a newfile we will be adding later. Scratch The
first file fromyour backup <> OPEN 5, 8, 15, " S0: AH': CLOSE15 <>

Wor ki ng with your original

2) Place a wite protect tab on the original to ensure its safety
during the breaking process.

3) Turn of f your conputer and insert your reset assenbly into the
cartridge port. Turn the conputer on again and | oad the boot
file and start the load process <> LOAD'AH',8,1 <> . Allow the
programto load until the screen turns black and the words
LOADI NG DATA appear in the middle of the screen. At this point,
reset the conputer.

4) Renove the original disk fromyour drive and insert the utility
di sk. Load the $COOO nonitor <> LOAD'49152",8,| <>. Wien the
load is conplete, sys the nonitor in with sys 49152. The nonitor
shoul d be active now. Renove the utility disk fromthe drive and
replace it with the backup work disk.

5) Interpret menory starting at $0801 (I 0801). Scroll through
menory and notice the Basic program Qur task is to repair the
poi nters and save the programto your backup (see Schene B
Intro). Using the nenory command (N 0801) inspect code at 0801
Notice that the first two bytes are 00 00. These two bytes
represent the start of the flan line in this Basic program
Qobvi ously, these bytes have been destroyed by the reset because
the next line couldn't be zero. To find the correct bytes to
replace the two zeros, follow this procedure. W know the first
four bytes are pointer bytes ($080l-%$0804). we al so know t hat
the next tine a zero byte appears in nenory ($0811), it signals
a new |line. The next address is the address that the pointer
will point to ($0812). Therefore, the first two bytes in this
program shoul d be 12 08 because all addresses are read in

K.J. REVEALED TRILOGY PAGE [I 5] (01990 K. J. P. B.

reverse order. Now we can scroll to the two zeros at $0801 and
type over them 12 08 and hit RETURN. The first four bytes
starting at $0801 should now be 12 08 O 00 (the A 00 bytes
represent the current line nunber in reverse d 00=00 01). CQur
Basic programis now repaired and all that's left is to |ocate
the end of the programand save it to your backup disk. To find
t he program end, use the HUNT conmmand in your nonitor. W'l

hunt for the three zero bytes that signal the end of Basic.

<>H 0801 8000 00 00 00 <>. As the first bytes begin to be
reported, hit the nunber 1 key to stop the hunt. We are only
interested in the first address reported. In this case, it
shoul d be $1Cl15. Using the MEMORY command, inspect nenory around
the address $1C15. You will notice that the third zero is at the
| ocation $1Cl15. W& now have all the information needed to save

t he new boot to your backup. The start address is $0801

(begi nning of Basic) and the end address is $1Cl6 (all nonitors
require us to save the actual address plus one: $1C15+ =$1C16).
Make sure your backup is in the drive and save the ~enory from
$0801- $1C15 <> S "AH', 08, 0801, 1C16 <>.

Wien the save is conplete, you will have a broken copy that will
no | onger do a protection check. W have essentially replaced
the auto boot and the protection check with the result, a Basic
boot .

SUPERBOW. SUNDAY : AVALON HI LL
Pr ocedur e:

Loading the original produces a rattle free |oad, and an error

scan shows no standard errors. A backup nmade with the C 64 Fast
Copi er produces a non-working copy. A backup made with a nybbl er
produces the sane non-working copy. Before starting to work on this
program pl ease nmake a non-worki ng backup of the original

wor ki ng with your backup

1) Start by validating the BAM <> OPEN 5, 8, 15, "V': CLCSEI 5 <> to
make roomfor a newfile we will be adding later. Scratch The
first file fromthe backup <> OPEN 5, 8, 15, "S0: START": CLOSEl 5 <>

wor ki ng with your original

2} Place a wite protect tab on the original to ensure its safety
during the breaking process.

3) Turn your conputer off and insert the reset assenbly into the

cartridge port. Turn the conputer on again and | oad the boot
file and start the | oad process <> LOAD'START", 8,1 <>. Allow the

K.J. REVEALED TRILOGY PAGE [I 6] (01990 K. J. P. B.

4)

5)

programto load until the gane nenu is on the screen. At this
poi nt, reset the conputer.

Renmove the original disk fromyour drive and insert the utility
di sk. Load the $COOO nonitor <> LOAD'49]52",8,1 <> . When the
load is conplete, sys the nonitor in with SYS49152. The nonitor
shoul d be active now. Renove the utility disk fromthe drive and
replace it with the backup work disk.

Interpret nmenory starting at $0801 (I 0801). Scroll through
menory and notice the Basic program Qur task is to repair the
poi nters and save the programto your backup (see schene B
intro). Using the nmenory command (H 0801) inspect code at 0801
Notice that the first two bytes are 00 00. These two bytes
represent the start of the next line in this Basic program

Qobvi ously, these bytes have been destroyed by the reset because
the next line couldn't be zero. To find the correct bytes to
replace the two zeros, follow this procedure. W know that the
first four bytes are pointer bytes ($0801-$0804). W al so know
that the next tinme a zero byte appears in nenory ($0811), it
signals a new line. The next address is the address that the
pointer will point to ($0812). Therefore, the first two bytes in
this program shoul d be 12 OB because all addresses are read in
reverse order. Now we can scroll to the two zeros at $0801 and
type over them 12 08 and hit RETURN. The first four bytes
starting at $0801 should now be 12 08 00 00 (the 00 DO bytes
represent the current |ine nunber in reverse DO 00=00 DO, yes

we CAN have a line nunber 0!). Qur BASIC programis now repaired
and all that is left is to |locate the end of the program and
save it to our backup disk. To find the program end, use the
HUNT comand in your nonitor. We'll hunt for the three zero
bytes that signal the end of Basic. <>H 0801 8000 DO DO DO <>.
As the first bytes begin to be reported, hit the nunber 1 key to
stop the hunt. We are only interested in the first address
reported. In this case it should be $OA6E. Using the nenory
command, inspect nmenory around the address $OAGE. You will
notice that the third zero is at the location $OA70. W now have
all the information needed to save the new boot to our backup
The start address is $0801 (begi nning of Basic) and the end
address is $0A71 (all nonitors require us to save the actua
address plus one: $0A70+l =$0A71). Make sure your backup is in
the drive and save the nenory from $0801-$0A70 <>
S"START", 08, 0801, 0A71 <>.

Wien the save is conplete, you will have a broken copy that will
no | onger do a protection check. W have essentially replaced
the auto boot and the protection check with the result, a Basic
boot .

K.J. REVEALED TRILOGY PAGE [17] (01990 K. J. P. B.

GULFSTRI KE : AVALON HI LL

Pr ocedur e:

Loading the original produces a rattle free |oad, and an error

scan shows no standard errors. A backup nmade with the C 64 Fast
copi er or a nybbler produces a non-working copy. Before starting,
pl ease nmake a non-wor ki ng backup of the original

wor ki ng with your backup

1

2)

Start by validating the BAM <> OPEN 5, 8, 15,"V': CLOCSEI 5 <> to
make roomfor a newfile we will be adding later. Scratch the
first file fromyour backup <> OPEN 5, 8, 15, " S0: BOOT": CLOSEl 5 <>

Turn off your conmputer and insert the reset assenbly into the
cartridge port. Turn the conputer on again and renpbve your
backup fromthe drive. Insert the utility disk and |oad the
$COO0 nonitor <> LOAD'49152",8,1 <>. After the load, sys in your
nmonitor with SYS 49152 and hit RETURN. W& want to fill nenory
from $0801- $2000 wi th EA so, use the FILL conmand

<> F 0801 2000 EA <>. W now have a marked work space to | oad
our programinto. Use the reset button to reset the conputer and
cl ear the screen.

wor ki ng with your original

3)

4)

5)

6)

Place a wite protect on the original to ensure its safety
during the breaking process.

Load the boot file and start the | oad process
<> LOAD'BOOT" 18,1 <>. Allow the programto load until the screen
clears and then turns blue. At this point, reset the conputer.

Renmove the original disk fromyour drive and insert the utility
di sk again. Load The $COOO nonitor <> LOAD'49152",8,1 <>. \Wen
the load is conplete, sys the nmonitor in with 5YS49152. The
nonitor should be active now Renove the utility disk fromthe
drive and replace it with the backup work disk

Interpret nmenory starting at $0801 (I 0801). Scroll through
menory and notice the Basic program Qur task is to repair the
poi nters and save the programto our backup (see Schene B
Intro). Using the MEMORY conmand (M 0801), inspect code at
$0801. Notice that the first two bytes are 00 00. These two
bytes represent the start of the next line in this Basic
program obviously, these bytes have been destroyed by the reset
because the next line couldn't be zero. To find the correct

K.J. REVEALED TRILOGY PAGE [I 8] (01990 K. J. P. B.

bytes to replace the two zeros, follow this procedure. W know
the first four bytes are pointer bytes ($0801-$0804). W al so
know that the next time a zero byte appears in nenory ($080D)

it signals a new line. The next address is the address that the
pointer will point to ($080E). Therefore, the first two bytes in
this program shoul d be CE 08 because all addresses are read in
reverse order. Now we can scroll to the two zeros at $0801 and
type over them CE 08 and hit RETURN. The first four bytes
starting at $0801 should now be OE 08 OA 00 (the QA 00 bytes
represent the line nunber in reverse QA 00=0C0CA =10 in

decinmal). Qur Basic programis now repaired and all that is left
is to locate the end of the programand save it to our backup

di sk. To find the program end, use the HUNT conmand in your
monitor. We'll hunt for the first three EA bytes that signal the
end of the programthat we |loaded in <> H 0801 2000 EA EA EA <>.
This search will bring back the address $08A5. Di sassenbly of
code around this address reveals a small machi ne | anguage
program pl aced under a Basic program To properly capture al

t he necessary code, we nust save the code fromthe begi nning of
Basi c ($0801) to the beginning of our EA bytes ($08A5). Because
all nmonitors require us to add one extra byte to the end
address, use this comrand: <> S"BOOT", 08, 0801, 08A6 <>.

Wien the save is conplete, you will have a broken copy that will

no | onger do a protection check. We have essentially replaced the
auto boot and the protection check with the result, a small program
consisting of a Basic |oader with a nmachi ne | anguage routine placed
under it.

CREATI VE CONTRAPTI ONS : BANTAM
Pr ocedur e:
Loading the original produces a rattle free |oad, and an error
scan shows no standard errors. A backup nmade with the C 64 Fast
Copi er produces a non-working copy. A backup made with a nybbl er
produces the sane non-working copy. Before starting to work on this
program pl ease nmake a non-worki ng backup of the original

Wor ki ng with your backup

) Start by scratching the first file fromyour backup
<> CPEN 5, 8, 15, "S0: CREATI VE": CLCSEl 5 <>

Wor ki ng vith your original

2) Place a wite protect on the original to ensure its safety
during the breaking process.

K.J. REVEALED TRILOGY PAGE [I9] (01990 K. J. P. B.

3) Turn your conputer off and insert the reset assenbly into the
cartridge port. Turn the conputer on again and | oad the boot
file and start the | oad process <> LOAD'CREATI VE", 8 <>. Wen the
cursor appears, type RUN and hit RETURN. Let the program | oad
for about 15 seconds and reset the conputer.

4) Renove the original disk fromyour drive and insert the utility
di sk. Load the $COOO nonitor <> LOAD'49152",8,1 <>. \Wen the
load is conplete, sys the nonitor in with SYS49152. The nonitor
shoul d be active now. Renove the utility disk fromthe drive and
replace it with the backup work disk.

5) Interpret menory starting at $0801 (I 0801). Scroll through
menory and notice the Basic program Qur task is to repair the
poi nters and save the programto our backup (see Schene B
Intro). Using the MEMORY command (M 0801), inspect code at 0801
Notice that the first two bytes are 00 00. These two bytes
represent the start of the next line in this Basic program
Qobvi ously, these bytes have been destroyed by the reset because
the next line couldn't be zero. To find the correct bytes to
replace the two zeros, follow this procedure. W know the first
four bytes are pointer bytes ($0801-$0804). W al so know t hat
the next tinme a zero byte appears in nenory ($0818), it signals
a new |line. The next address is the address that the pointer
will point to ($0819). Therefore, the first two bytes in this
program shoul d be 19 OB because all addresses are read in
reverse order. Now we can scroll to the two zeros at $0801 and
type over them 19 08 and hit RETURN. The first four bytes
starting at $0801 should now be 19 08 OA 00 (the QA 00 bytes
represent the current line nunber in reverse QA 00=00CA =10 in
decinmal). Qur Basic programis now repaired and all that is left
is to locate the end of the programand save it to your backup
di sk. To find the programend, use the HUNT conmand in your
monitor. We'll hunt for the three zero bytes that signal the end
of Basic. <>H 0801 8000 00 00 00 <>. As the first bytes begin to
be reported, hit the nunber 1 key to stop the hunt. W are only
interested in the first address reported. In this case it should
be $0879. Using the MEMORY conmmand, inspect nenory around the
address $0879. You'll notice that the third zero is at the
| ocati on $087B. W now have all the information needed to save
the new boot to our backup. The start address is $0801
(begi nning of Basic) and the end address is $087C (all nonitors
require us to save the actual address plus one: $087B+l =$087C)
Make sure your backup is in the drive and save the nmenory from
$0801- $087B <> S"CREATI VE', 08, 0801, OB7C <>.

Wien the save is conplete, you will have a broken copy that will
no |l onger do a protection check, and will even |oad faster than
the original. W have essentially replaced the auto boot and
the protection check with the result, a Basic boot.

K.J. REVEALED TRILOGY PAGE [20] (01990 K. J. P. B.

I NTRO : PROTECTI ON SCHEME TYPE C

This protection schene enploys the use of a "fat track"

to

prevent the user from making his backup. To nake natters worse,

the fat track is placed on the outer (36-40) tracks.

Most of the exanples covered in this manual work approxi mately
the sanme. The followi ng general |oading procedure is taken with

each.
1) The boot is |oaded and autostarts the program
2) A fast loader is set up and activated.
3) The logo screen is |loaded in and acti vat ed.
4) The protection routine is decrypted.

5) The files pertaining to the programare | oaded in.
are generally encrypted.

These

6) The protection is checked, which places a nuneric val ue

($FF) in the disk drive's nenory.

7) The value is checked using a nmenory read.

8) The value is used as a part of a decryption routine to
decrypt the nmain program Proper decryption takes place

ONLY if the correct value is returned.

9) The code then junps to the start of the program

The Activision exanples in this nanual represent this protection

scheme init's nost difficult formto un-protect. You'l

find this

sanme schene being used by other software publishers, but generally
not encrypted. They usually check for the value in the sane way

and start the programif found. One exanple of this wll

be given,

and will be unprotected by a different nmethod. Understanding this
routine is inperative, because this scheme has been inproved, and
will be covered in it's expanded formin updates to this manual

K.J. REVEALED TRILOGY PAGE (21) (c) 1990 K.J.P.B.

COUNTDOWN TO SHUTDOWN : ACTI VI SI ON
Pr ocedur e:

Loading the original produces a rattle free |oad, and an error
scan shows no standard errors. A backup nmade with the C 64 Fast
Copi er produces a non-working copy. A nybbled backup produces the
sane non-wor ki ng copy. Before starting to work on this program

pl ease nake a (non-working) backup of the original, and a disk |og
to log the file addresses.

1) Turn off your conputer and insert your reset button
assenbly into the cartridge port. Turn the conputer on again. Load
the $COOO nonitor fromyour utility disk <> LOAD'49152",8,1 <>, At
the conpletion of the |oad, type SYS 49152 and hit RETURN. The
nmoni t or shoul d be active now.

Wor ki ng with your backup

2) Wth your backup in the drive and the nonitor active, |oad
the boot file <> L "1CQ0P*",08 <>. \When the load is conplete,
di sassenbl e nenory at $02A0. You'll find a | oader routine that

loads in the 1985 file and junps to $0B79.

3) Load the 1985 file into menory <> L " 19*",08 <> After
the load, start disassenbly of code at $0B79 (D 0B79). The code is
as follows: $0B79-$0BCB sets up a fast |oader and loads in the

| ogo screen. $OBCC is a JSR (GOSUB in BASIC) to the |l ogo screen
$OBCF is the start of the main programload. It is this code

that is of interest to us.

4) The code at $0C40-$0C61 is a decryption routine. Exam ne
it because it is the key to the de-protection. This routine allows
decryption and examni nation of the protection code. At the end of
this decryption routine is a RTS ($0C61). Using the Menory

command (M 0C61), change the 60 to a 00. This will allow a

normal operation of code until the 00 (Break or Stop) is
encountered. The program once started, will stop right after

the decryption, allowing us to exam ne the protection routine.

5) For our purposes, we will skip over the fast |oader and

| ogo screens. Let's start the programafter the |l ogo screen is run
($OBCF). Type G OBCF and hit RETURN. The screen should turn

bl ack. Wait for about five seconds and reset the conputer.

Return to the nmonitor with SYS 49152. Using the | NTERPRET

command, exam ne code from $QAOO on (I QACO . Code at $OAEF
reveal s a Bl ock Execute (executes a protection check routine
placed in drive nenory) and code at $0B72 reveals a Menory Read

K.J. REVEALED TRILOGY PAGE (22) (c) 1990 K.J.P.B.

that reads the value placed in the drive by the protection
check. This value, in this schene, is always an $FF. Exam ne
code at $0B42. The value is being returned to the conputer by a
Menory Read with a kernal routine. The $FFCF routine brings back
the value $FF. It is then EORed with $AA which turns it into a
$55 and then stores it at location $0B65. Qur job is to place
the correct value in $0B65 and di sable the routine overwiting
it. This can be acconplished by placing three NOPs at $0B47
which will allow the routine to Menory Read the val ue but not
place it in computer RAN. Al that is left is to place the
correct value of $55 at $0B65.

6) Now we have the correct values to plug into the code to

di sabl e and give the protection check what it wants. The | ast step
is to place the changes on the disk. This is best done with a sector
editor because to scratch and replace the 1985 file will destroy
necessary code placed on the disk. This code is not accessed in

the normal fashion, so it will be overwitten if we do a scratch
and save of the 1985 file. Finish the job by follow ng these

st eps:

Al We know the code was originally encrypted, so we nust place
our values on the disk in encrypted form The three bytes at
$0B47 and the single byte at $0B65 are the only changes
needed. Reload the 1985 file <> L" 19*" ,08 <> Again go to
| ocati on $0B61 and place a 00 in nenory. |nspect the three
bytes a $0B47. They should be 29 7A 91. The byte at $0B65
shoul d be a A2. These are the bytes we will |ook for on our
backup with the sector editor.

B The code can now be decrypted by typing G OBCF. Again the
screen will turn black. After a few seconds, reset the
conputer and reactivate the nmonitor with SYS 49152. Using the
MEMORY conmand (N 0B47), change the code at $0B47 from 8D 65
OB to EA EA EA. change the code at $0B65 from A2 to 55.

g Now t hat our changes are in nenory, we nmay re-encrypt the
file (and our byte changes) by again typing G OBCF. Again,
reset out and SYS the nmonitor back in with SYS 49152 and hit
RETURN. Exam ne nmenory at $0B47 and find the encrypted byte
changed to SB. Now we know t he changes, and the |ocation, so
changes. They should be 4E F5 70. The byte at $0B65 has
we may now do the actual changes to the backup

Dl Reset the conputer and | oad the sector editor fromthe
utility disk [LOAD'DI SK DR',8,1]. When the cursor appears,
type run and hit RETURN. Renove the utility disk and place
your backup in the drive. flit RETURN. You will be shown
track 18, sector 1. By placing the cursor at position 35 you
will be on the file pointers of the 1985 file. Press the J

K.J. REVEALED TRILOGY PAGE (23) (c) 1990 K.J.P.B.

key to junp to the beginning of the 1985 file. Wen the
sector comes on the screen, exanine the first four bytes. The
first two are links to the next sector of the file. The next
two are the address bytes in reverse order ($0700). W know
our changes are in nenory bl ock $OBOO so we can use the N key
to page through nenory. Press N to go to approxi nately 0800,
press again to go to 0900, press again to go to QAOO, and
once nore to $0OBOO. This block turned out to be track 17
sector 3 on our version. Yours could be in a different

| ocation on the disk but the idea will be the sane.

E] Using the cursor key to nove through the code, we
find the original three bytes 29 7A 91 at |ocation 83. The
change to 4E F5 70 can be acconplished with the @key. The
changes nust be the decimal equivalent. These are 78 245 112.
Change each byte by placing the cursor over the byte to be
changed, and type @and then the decimal nunber change. Hit
RETURN when the change is made to lock it in. Wen all three
byt es are changed, continue searching with the cursor for the
A2 byte. This can be found at 113. Using the same change
procedure, change it to a decimal 91 ($5B). Wen all changes
have been nade and | ocked in, press Cto copy the sector back
to the disk.

You now have a copy that can be fast copied. The pl acenent of

data on the disk in methods other than directory files will not
allow you to file copy. One other point of interest is the fast

| oader installed in nmany pieces of this publisher's software. This
fast |oader is NOT conpatible with the 1571 disk drive. In many
(but not all) of the programs, you may di sable the fast |oader and
all ow the programto |l oad on the 1571 by changing the junp to the
mai n programin the autoboot. Countdown does not work by doing
this but, just as an exanple, you would change the 79 OB (JMP 0B79)
to CF OB (use DI SK Doctor and the deci mal equivalents). This would
bypass the fast-loader and the | ogo screen. A snall price to pay
for the 1571 owners

WEB DI MENSI ON : ACTI VI SI ON
Pr ocedur e:

Loading the original produces a rattle free |load, and an error
scanner shows no standard errors. A backup nmade with the C 64 Fast
Copi er produces a non-working copy. A backup nmade with a nybbl er
produces the sane non-working copy. Before starting to work on
this program please nake a (non-working) backup of the original
and a disk log to log the file addresses.

K.J. REVEALED TRILOGY PAGE (24) (c) 1990 K.J.P.B.

1) Turn off your conputer and insert your reset button
assenbly into the cartridge port. Turn the conputer on again. Load
the $C000 nonitor fromyour utility disk <> LOAD'49152",8,1 <>. At
the conpletion of the |oad, type SYS 49152 and hit RETURN. The
nmoni t or shoul d be active now.

wor ki ng with your backup

2) Wth your backup in the drive and the nonitor active,
| oad the boot file <> L "COP*",08 <> Wien the load is conplete,
di sassenbl e nenory at $02EO0. You'll find a | oader routine that

loads in the 1985 file and junps to $OC3D

3) Load the 1985 file into nmenory <> L "19*",08 <> After
the load, start disassenbly of code at $OC3D (D OC3D). The code is
as follows: $0OC3D $OC5B sets up a fast |oader and loads in the

| ogo screen. $OC5C is a JSR (GOSUB in BASIC) to the |l ogo screen
$OC5F is the start of the main programload. It is this code

that is of interest to us.

4) The code at $OCE5-$0D06 is a decryption routine. Exam ne
it, because it is the key to the de-protection. This routine allows
decryption and examni nation of the protection code. At the end of
this decryption routine is a RTS ($0D06). Using the MEMORY

command (M 0D06), change the 60 to a 00. This will allow a

normal operation of code until the 00 (Break or Stop) is
encountered. The program once started, will stop right after

the decryption, allowing us to exam ne the protection routine.

5) For our purposes, we will skip over the fast |oader and
| ogo screens. Let's start the programafter the |l ogo screen is run
($OC5F). Type G OCGF and hit RETURN. The screen should turn

bl ack. Wait for about five seconds and reset the conputer.
Return to the nmonitor with SYS 49152. Using the | NTERPRET
conmmand, exami ne code from $QAOCO on (I OAOD . Code at $0AB6
reveal s a Bl ock Execute (executes the protection check placed in
drive nmenory) and code at $OAC2 reveals a Menory Read that reads
the value placed in the drive by the protection check. This
value is, in this schene, always an $FF. Exam ne code at $0A92
The value is being returned to the conputer by a Menory Read
with a kernal routine. The $FFCF routine brings back the val ue
$FF. It is then EORed with $FF which turns it into a $00 and
then stores it at location $OAB5. Qur job is to place the
correct value in $OAB5 and di sable the routine overwiting it.
Thi s can be acconplished by placing three NOPs at $0A97 which
will allowthe routine to Menory Read the val ue but not place it
in computer RAM All that is left is to place the value of $00
at $OAB5.

6) Now we have the correct values to plug into the code to
di sabl e

K.J. REVEALED TRILOGY PAGE (25) (c) 1990 K.J.P.B.

and give the protection check what it wants. The last step is to
pl ace the changes on the disk. This is best done with a sector
editor because to scratch and replace the 1985 file will destroy
necessary code placed on the disk. This code is not accessed in
the nornmal fashion, so it may be overwitten if we do a scratch
and save of the 1985 file. Finish the job by follow ng these

st eps:

Al We know the code was originally encrypted, so we nust

pl ace our values on the disk in encrypted form The three bytes at
$0A97 and the single byte at $0OAB5 are the only changes

needed. Reload the 1985 file <> L 19*" ,08 <> Again, goto

| ocati on $0D06 and place a 00 in nenory. |nspect the three

bytes at $0A97. They should be 19 8E E8. The byte at $0QAB5

shoul d be a 8A. These are the bytes we will 1ook for on our

backup with the sector editor.

B The code can now be decrypted by typing G OC5F. Again the
screen will turn black. After a few seconds, reset the

conputer and reactivate the nmonitor with SYS 49152. Using the
MEMORY conmand (M 0A97), change the code at $0A97 from 8D B5

OA to EA EA EA. Change the code at $0AB5 from AC to 00.

g Now t hat our changes are in nenory, we nmay re-encrypt the
file (and our byte changes) by again typing G OC5F. Again,

reset out and SYS the nmonitor back in with SYS 49152 and hit
RETURN. Exam ne nmenory at $0A97 and find the encrypted byte
changes. They should be 7E DI 08. The byte at $0AB5 has

changed to 26. Now we know t he changes, and the | ocation so

we may now do the actual changes to the backup

Dl Reset the conmputer and |oad the sector editor fromthe
utility disk <> LOAD'DI SK DR',8,1 <>. \Wen the cursor
appears, type RUN and hit RETURN. Renove the utility disk and
pl ace your backup in the drive. Ht RETURN. You will be shown
track 18, sector 1. By placing the cursor at position 35, you
will be on the file pointers of the 1985 file. Press the J
key to junp to the beginning of the 1985 file. Wen the
sector comes on the screen, exanine the first four bytes. The
first two are links to the next sector of the file. The next
two are the address bytes in reverse order ($0QACO). We know
our changes are in menory bl ock $OACO so we are in the proper
bl ock to make our changes. This block turned out to be track
17, sector 2 on our version. Yours could be in a different

| ocation on the disk, but the idea will be the sane.

E] Using the cursor key to nove through the code, we find the
original three bytes 19 8E E8 at |ocation 155. The change to
7E DI 08 can be acconplished with the @key. The changes nust
be the deci mal equivalent. These are 126 209 08. Change each

K.J. REVEALED TRILOGY PAGE (26) (c) 1990 K.J.P.B.

by placing the cursor over the byte to be changed, and

type @and the deci nal nunber change. Hit RETURN when the
change is nade to lock it in. Wen all three bytes are
changed, continue searching with the cursor for the BA byte.
This can be found at position 185. Using the same change
procedure, change it to a decimal 38 ($26). Wen all changes
have been nade and | ocked in, press Cto copy the sector back
to the disk.

You now have a copy that can be fast copied. The pl acenent of

data on the disk in methods other than directory files will not
allow you to file copy. One other point of interest is the fast

| oader installed in nmany pieces of this publisher's software. This
fast |oader is NOT conpatible with the 1571 disk drive. In many of
the (but not all) of the programs, you may di sable the fast | oader
and allow the programto |oad on the 1571 by changing the junp to
the main programin the autoboot. Wb Dimension will work by doing
this. Just change the 3D OC (JMP OC3D) to SF OC (use DI SK Doct or
and the deci mal equivalents). This will bypass the fast |oader and
the logo screen. A small price to pay for the 1571 owners.

FI REWORKS CELEBRATION KI T : ACTI VI SI ON
Pr ocedur e:

Loading the original produces a rattle free |oad, and an error
scanner shows no standard errors. A backup nade with Three M nute
Backup produces a non-working copy. A backup nade with a nibbler
produce the same non-working copy. Before starting to work on this
program please nmake a (non-working) backup of the original, and a
disk log to log the file addresses.

1) Turn of f your conputer and insert your reset button
assenbly into the cartridge port. Turn the conputer on again. Load
the $COOO nonitor fromyour utility disk <> LOAD'49152",8,1 <>. At
the conpletion of the |oad, type SYS 49152 and hit RETURN. The
nmoni t or shoul d be active now.

wor ki ng with your backup

2) Wth your backup in the drive and the nonitor active, |oad
the boot file <> L "COP*" ,08 <> Wen the load is conplete
di sassenbl e nenory at $02EO0. You'll find a | oader routine that

loads in the 1985 file and junps to $OC3D
3) Load the 1985 file into menory <> L " 19*",08 <> After

the load, start disassenbly of code at $OC3D (D OC3D). The code is
as follows: $0OC3D- $0OC5B sets up a fast | oader and loads in the

K.J. REVEALED TRILOGY PAGE (27) (c) 1990 K.J.P.B.

| ogo screen. $OC5C is a JSR (GOSUB in BASIC) to the |l ogo screen
$OC5F is the start of the main programload. It is this code
that is of interest to us.

4) The code at $OCE2-$0D03 is a decryption routine. Exam ne
it, because it is the key to the de-protection. This routine allows
decryption and examni nation of the protection code. At the end of
this decryption routine is a RTS ($0D03). Using the MEMORY

command (M 0D03), change the 60 to a 00. This will allow a

normal operation of code until the 00 (Break or Stop) is
encountered. The program once started, will stop right after

the decryption, allowing us to exam ne the protection routine.

5} For our purposes, we will skip over the fast |oader and
| ogo screens. Let's start the programafter the |l ogo screen is run
($OC5F). Type G OCGF and hit RETURN. The screen should turn

bl ack. Wait for about five seconds and reset the conputer.
Return to the nmonitor with SYS 49152. Using the | NTERPRET
conmmand, exami ne code from $QAOO on (I OQAOD . Code at $0AB6
reveal s a Bl ock Execute (executes the protection check placed in
drive nmenory) and code at $OAC2 reveals a Menory Read that reads
the value placed in the drive by the protection check. This
value, in this schene, is always an $FF. Exami ne code at $0A92.
The value is being returned to the conputer by a Menory Read
with a kernal routine. The $FFCF routine brings back the val ue
$FF. It is then EORed with $FF which turns it into a $00 and
then stores it at location $0AB5. Qur job is to place the
correct value in $OAB5 and di sable the routine overwiting it.
Thi s can be acconplished by placing three NOPs at $0A97 which
will allowthe routine to Menory Read the val ue but not place it
in computer RAM All that is left is to place the value of $00
at $OAB5.

6} Now we have the correct values to plug into the code to
di sabl e and give the protection check what it wants. The | ast step
is to place the changes on the disk. This is best done with a
sector editor because to scratch and replace the 1985 file will
destroy necessary code placed on the disk. This code is not
accessed in the normal fashion, so it may be overwitten if we do
a scratch and save of the 1985 file. Finish the job by follow ng

t hese steps:

Al We know the code was originally encrypted, so we nust

pl ace our values on the disk in encrypted form The three bytes at
$0A97 and the single byte a $OAB5 are the only changes

needed. Reload the 1985 file <> L " 19*" ,08 <> Again go to

| ocati on $0D06 and place a 00 in nenory. |nspect the three

bytes at $0A97. They should be 19 8E E8. The byte at $OAB5

shoul d be an BA. These are the bytes we will look for on our
backup with the sector editor.

K.J. REVEALED TRILOGY PAGE (28) (c) 1990 K.J.P.B.

B The code can now be decrypted by typing G OC5F. Again, the
screen will turn black. After a few seconds, reset the

conputer and reactivate the nmonitor with SYS 49152. Using the
MEMORY conmand (M 0A97), change the code at $0A97 from 8D B5

OA to EA EA EA. Change the code at $0AB5 from AC to 00.

g Now t hat our changes are in nenory, we nmay re-encrypt the
file (and our byte changes) by again typing G OC5F. Again

reset out and SYS the nmonitor back in with SYS 49152 and hit
RETURN. Exam ne nmenory at $0A97 and find the encrypted byte
changes. They should be 7E DI 08. The byte at $0AB5 has

changed to 26. Now we know t he changes, and the | ocation so

we may now do the actual changes to the backup

Dl Reset the conputer and |oad the sector editor fromthe
utility disk <> LOAD'DI SK DR',8,1 <> Wen the cursor
appears, type RUN and hit RETURN. Renove the utility disk and
pl ace your backup in the drive. Ht RETURN. You will be shown
track 18, sector 1. By placing the cursor at position 35, you
will be on the file pointers of the 1985 file. Press the J
key to junp to the beginning of the 1985 file. Wen the
sector comes on the screen, exanine the first four bytes. The
first two are links to the next sector of the file. The next
two are the address bytes in reverse order ($0QACO). We know
our changes are in menory bl ock $OAQO so we are in the proper
bl ock to make our changes. This block turned out to be track
17, sector 4 on our version. Yours could be in a different

| ocation on the disk, but the idea will be the sane.

E] Using the cursor key to nove through the code, we find the
original three bytes 19 8E E8 at |ocation 155. The change to
7E DI 08 can be acconplished with the @key. The changes nust
be the decinal equivalent. These are 126 209 08. Change each
byte by placing the cursor over the byte to be changed, and
type @and the deci nal nunber change. Hit RETURN when the
change is nade to lock it in. Wen all three bytes are
changed, continue searching with the cursor for the 8A byte.
This can be found at position 185. Using the same change
procedure, change it to a decimal 38 ($26). Wen all changes
have been nade and | ocked in, press Cto copy the sector back
to the disk.

You now have a copy that can be fast copied. The pl acenent of

data on the disk in methods other than directory files will not
allow you to file Copy. One other point of interest is the fast

| oader installed in nmany pieces of this publisher's software.

This fast |l oader is NOT conpatible with the 1571 disk drive. In
many (but not all) of the prograns, you nmay disable the fast | oader
and allow the programto |oad on the 1571 by changing the junp to
the main programin the autoboot. Fireworks Kit will work by doing

K.J. REVEALED TRILOGY PAGE (29) (c) 1990 K.J.P.B.

this. Just change the 3D OC (JMP OC3D) to SF OC (use DI SK Doct or
and the decinal equivalents). This will bypass the fast |oader and
the logo screen. A small price to pay for the 1571 owners.

RINGS OF ZILFIN : S.S. 1.
Pr ocedur e:

Loading the original produces a rattle free |oad, and an error
scanner shows no standard errors. A backup nade with the C 64 Fast
Copi er produces a non-working copy. A nybbled backup produces the
sane non-wor ki ng copy. Before starting to work on this program

pl ease nake a (non-working) backup of the original, and a disk |og
to log the file addresses.

wor ki ng with your backup

1) Turn off your conputer and insert your reset button
assenbly into the cartridge port. Turn the conputer on again. Load
t he backup disk <> LOAD "*",8,1 <> Hit RETURN and the program

wi Il autoboot. Let the load continue until the screen turns bl ack
and the drive conmes to a stop. The program has failed protection
and has "crashed".

2} Hit the reset button to return the system back to nornal.
Renmove the backup, and insert your utility disk in the drive. Load
the $COOO nonitor <>LOAD "49152",8,1<> and sys it in by typing SYS
49152 and hit RETURN. \When the nonitor cones up, use the

| NTERPRET command to search nenory for any drive comands. Start
your search at the beginning of BASIC nenory (I 0801). scrolling
down through menory, keep your attention on the left side of

your screen. \WWen you cone to the nmenory at $6FDE, you'll find a
B-E (Bl ock Execute) and a MR (Menory Read). This is the area of
menory that contains the protection code.

3) Di sassenbl e nenory at $6F77 (D 6F77), and scroll slowy
down through the code. The code from $6F7A to $6FDD represents a
subroutine that is called fromthe main program This code does
a Bl ock Execute fromtrack 35 sector 10. This neans it |oads
that block fromthe programdisk into the disk drive nenory and
executes that routine. At the conpletion of the routine, the
code returns to conputer RAM and resunes operation. Upon it's
return, a Menory Read of the drive nenory is done, |ooking for a
single byte placed in drive nenory by the protection check. This
byte is transferred fromthe drive to conputer RAM | ocati on
$6FDD and is then conpared to an $FF. If the byte is not an $FF
the code is directed to an endless loop. If it is an $FF, the
code continues until a JUMW FFC3 is encountered. Because the

K.J. REVEALED TRILOGY PAGE [30] (c) 1990 K.J.P.B.

kernal routine FFC3 has been accessed by a JUMP and not a JSR
it forces an RTS in the code flow This RTS returns the
protection check to the main program

4) Defeating this protection schene is sinple. W can place a RTS
at the beginning of the routine. This will short circuit the
protection check conpletely by sending the programflow back to
the code that called for it originally. Before changi ng code,
let's find out which file contains the protection check. Looking
over the disk log, we find that the file P99 is the only likely
candi date. The starting address is $6000 and the endi ng address
is $6FF4. Renobve your utility disk fromthe drive and again
insert the backup in it's place. Double check the file by
| oading P99 directly fromthe backup <> L "P99",08 <> . Again
di sassenbl e code around $6F7A (D 6F7A) and nmeke sure this file
is the correct one that has the protection check. Wen
satisfied, use the MEMORY command to change the byte at the
address $6F7A (M 6F7A) to a 60. Now scratch and save this file
to your backup. Renmenber to add one byte to the endi ng address.
<> S "@: P99", 08, 6000, 6FF5 <>.

Your backup is now conpletely broken. It can be fast copied and,
because we have forced the programto not use the protection

check, it can even be file copied. Remenber, the Block Execute
(whi ch now is not used) accesses a specific spot on the disk, and
is not picked up by directory files. Finally, note the name placed
on the diskette directory. You'll find it on many prograns. Now you
know t he secret of XEMAG 2.0 protection

Four exanpl es using this schene have been di scussed above. W

must assume that you have nastered the techniques used to defeat
those titles. Many titles have been rel eased using Fat Tracks.

Some were relatively sinple to break and others were quite
difficult. Some protection progranmers have been checking not only
for the Fat Track but also to see if either their conputer OR drive
code had been tanpered with. This was done by checksumming. |If any
sign of tanpering was evident, the programrefused to run - even if
the break code was technically sound. If you have applied the

nmet hods in Kracker Jax Vol | to a sinmilar protection, and it
refused to work, you can assume they caught you in their code. W
are going to give you exanples of how to defeat the drive code
comput er code, and the checksunm ng. Be advi sed, these exanples
show tricks and techni ques that can be used again on other schenes.
Breaki ng protection involves thought and ingenuity.

K.J. REVEALED TRILOGY PAGE [31] (c) 1990 K.J.P.B.

TI TANI C : ACTI VI SI ON
Pr ocedur e:

Loadi ng the original disk produces a rattle free load, and an
error scan shows no standard errors. A backup nade with the C 64
Fast Copi er produces a non working copy. A backup nade with a
nybbl er produces the sane non working backup. Before starting to
work on this program please nmake a (non worki ng) backup of the
original, and a disk log to log the file addresses.

Wor ki ng with your backup

1) Let's start by plugging Hesnon in the cartridge port and | oadi ng
the boot < L "*" 08 > . Checking with the disk |log, start
di sassenbly of code at $02D7 <D 02D7> and cursor down through
the code. The code from $Q2EE to $0301 opens a channel for
| oadi ng, sets the file nane " 1985 ", loads that file in and
Junps to $4635. We can load that file in ourselves and inspect
it.

2) Cursor down to a clear spot and |load the 1985 file as
<L "™ 1985*" 08 > . Be sure to use two spaces before the 1985
file name. The disk log shows this file ranges from 4400- 46D8.
Look at the file in ASCI1 by using the Interpret comand | 4400
and cursor down through nmenory. Take note of what it |ooks I|ike,
because we will be looking again later. Let's start disassenbly
at the Junp to $4635 <D 4635> . Cursor down through the code and
note code from $4657 to $4668. Val ues are being set for the
decrypter at $466F to $4690 (see Kracker Jax Revealed Vol | for
nore details). W want to execute the decrypter and stop the
execution after the decryption takes place. To do this we nust
place a 00 (Break Instruction) at $4690. Use the Menory command
to nmake your change <M 4690> and change the 60 to a 00 and hit
return. Now we can decrypt the code by executing at $4657. Use
the GO conmand <G 4657>

3) When the nonitor breaks, use the Interpret comuand again
starting at $4400 [| 4400] and cursor down through nenmory again.
This tinme note the Bl ock- Execute at $4571. This conmand opens
channel 2, addresses drive 0, and sends the code at track 3
sector 0 to the RAM of the disk drive ($0400 in this case) and
executes the code in the drive. This code is the protection
check routine. Wiile in the Interpret node, also note the U
(Bl ock- Read) of the same Track 3/ Sector 0. This block read is
used to checksumthe drive code to check for tanpering
Checksuns t hroughout the conputer code al so check strategic
areas of the conputer code for tanpering. If changes in the

K.J. REVEALED TRILOGY PAGE [32] (c) 1990 K.J.P.B.

4)

5)

6)

original code are found, the programw |l not run even if the
break is correct. Here's a trick to break the drive code and
still keep the checksuns intact.

Turn the conputer off and back on again to clear nmenory. X to
BASI C <X> and fromthe Utility Disk, load the Block Read file

< LOAD'BLCCK READ',8 > . Wien the ready pronpt comes up. LIST
the file and on line 10 set the TRack variable to 03 and the
SEctor variable to 00. Hit RETURN to | ock your changes in and
relist the file to check your changes. This utility will Bl ock
Read Track 3/Sector 0 and send the code to $C000 in the conputer
where we can inspect it. Place the backup in the drive and start
the Block Read by Typing RUN and hitting return. The drive wll
spin and in about 30 seconds, the ready pronpt wll appear
Return to the nonitor by hitting Run/Stop-Restore. Disassenble
code at $CO00 <D COOC> . Cursor down through the code. The code
from $COO0-$CA | is the decryptor and will have to be executed
before we can inspect the drive code. You'll see that it is set
to decrypt this code in the $0400 Buffer in the drive and nust
be readdressed to decrypt at $CO00. Using the Menory Conmand,
change the 04 at $0006, $C009, $COCC, and $COOF to CO Now
Di sassenbl e starting at $CO00 agai n and check the decrypter
again. It should now be set up to decrypt code in the $C0O00
buf f er.

Let's execute the decrypter and inspect code. Type <G Cool >, and
when the nonitor breaks, Disassenble code at $C0O00 <D COOC> and
cursor down through the code. The code from $C012- $CAC checks
Track 35, bunps the head a half track and if the check is
satisfactory, stores a 0 in $0009. The Instruction at $CMD

| oads the accumulator with the value in $0009. Next, if that
value is not a 0, the code branches around the next two
instructions. These are the keys to the protection. The val ue of
$FF is stored at $AOFF in the drive nenory. Later a Menory Read
in the conputer code will check for the $FF and if it is in

pl ace at $A FF, the protection check will be passed. Qur job now
is to force this routine to pass even if the protection isn't in
pl ace. One way would be to place two NOPs ($EA) at $C050 to
erase the BNE C057. This would force the code to fall through
and store the $FF byte even if protection wasn't passed. This
woul d work, but the checksum would catch us. Here's a trick to
force the code to fall through and still pass the checksum

Because the key to this break is the BNE command at $C050, let's
flip those bytes and see what instruction comes up. Use the
Mermory command to change the DO G5 at $C050 to G5 DO <M COSO>.

Di sassenbl e $C050 agai n <D CO6C>. The BNE instructi on has now
becone an ORA DO. This has effectively negated the BNE because
this instruction is essentially worthless and perforns no task
that is actually used. The checksumwill al so pass because we

K.J. REVEALED TRILOGY PAGE [33] (c) 1990 K.J.P.B.

haven't actually changed any bytes, only their position. Let's
prepare to nake our changes to the disk. Turn of f the conputer
and renove Hesnon.

7) Fromthe utility disk, load and run the Disk Doctor. Place the
backup in the drive and using the b [b] command read in Track
3/ Sector 0. At position $50 (renenber $C050), 80 in deci nal
you'll find the two bytes that we need to flip. These are $M4
and $01. Renenber, these are the bytes in their encrypted form
Change these to $01, $D4. You may use the @key and the deci nmal
val ues. Starting at position 80, change two bytes to 01, 212.
Ht r <r>torewite the block and y <y> for yes. This title is
now broken from protection, and nay be fast copi ed. Because of
the Bl ock Execute to Track 3/ Sector 0, you nmay not file copy
this title. The drive code, even though broken, nust be in place
on the disk.

ROCKY HORROR SHOW : ACTI VI SI ON
Pr ocedur e:

Loadi ng the original disk produces a rattle free load, and an
error scan shows no standard errors. A backup nade with the C 64
Fast Copi er produces a non working copy. A backup nade with a
nybbl er produces the sane non working backup. Before starting to
work on this program please nmake a (non worki ng) backup of the
original, and a disk log to log the file addresses.

This break nethod is presented to add a trick to your arsenal

If it is confusing at first, a little studying of the code will
make the break clear. Print-outs of any confusing code may al so
hel p to nmake things clear

Wor ki ng with your backup

1) W will start by filling the BAMwith zeros so the drive will be
fooled into believing our backup disk is full. This way we can
scratch and then save a file back to the disk wthout
overwiting any programcode that isn't allocated in the BAM
Use this trick whenever you suspect any hidden files not in the
directory.

Load Di sk Doctor fromthe Utility D sk. Place the backup in the
drive and go to Track 18/ Sector 0 using - command. This is the
BAN sector. Using the @key, fill position 4 through 71 with

zeros (@. Skip over 72 to 75 which is the directory track and
fill 76 through 143 with zeros (@. Wen finished, rewite the
changes to the disk by hitting <r> for rewite and <y> for yes.

K.J. REVEALED TRILOGY PAGE [34] (c) 1990 K.J.P.B.

2)

3)

4)

5)

Wth Hesnon in the cartridge port, load the boot < L"*" 08 >.
Checking with the disk log, start disassenbly of code at $02D7

< D 02D7 > and cursor down through the code. The code from $02E8
to $0301 opens a channel for |oading, sets the file name

" 1985 ", loads that file in and Junps to $135A. W can | oad
that file in ourselves and inspect it.

Cursor down to a clear spot and |load the 1985 file as

<L "™ 1985*",08 > . Be sure to use two spaces before the 1985
file name. The disk log shows this file ranges from| Q00- 143F
Look at the file in ASCI1 by using the Interpret command

[1 1000] and cursor down through nmenory. Take note of what it

| ooks like, because we will be looking again later. Let's start
di sassenbly at the Junp to $135A < D 135A > . Cursor down

t hrough the code and note the decrypter code from $139B to

$l 3BC. W want to execute the decrypter and stop the execution
after the decryption takes place. To do this we nust place a 00
(Break) at $1398. Use the Menory conmand to make your change

<M 1398> and change the 4Cto a OO and hit return. Now we can
decrypt the code by executing at $137D. Use the GO conmand

< G 137D > . After the nonitor breaks, use the Interpret conmand
to exam ne the code from $1000 $143F again < | 1000 > . You'l
find it to be quite different now and you should be able to see
quite a few commands in ASCII. Finally use the Menory conmand to
change 00 we placed at $1398 back to a 4C < M 1398 >

Let's trace the code starting at $135A conmenting the code
pertaining to the protection check

$135A-$1394 . Sets up the decryption val ues.

$1395 JSR 139B : Executes decryption of 1985 file.

$1398 JMP | 3BD : Junp around decrypter already executed.

$1 3BD JSR 1184 : JSR to protection check.

$1184 JSR 1206 : Sets up for protection check

$1187 JSR 118E : checks drive nenory for a value of $FF at
$A FF. EORs that value with an $FF which
produces a Zero (0). Places that zero at
$1294. Later the value at $1294 is used in
t he program decrypti on.

$118A JSR 1269

$118D RTS

$13C0 JSR 1116 : Continue on.

This protection would be sinple to deprotect if it weren't for
t he checksunms used throughout the code. Every strategic point
has been checked and if we are caught tanpering with the code,
the programwon't work, even if the break is sound. W need to
trick the checksuns. Testing in various spots has uncovered an
area that is not checksumred. The decrypter routine is not
checked and if nmoved, will provide us with a work area to place

K.J. REVEALED TRILOGY PAGE [35] (c) 1990 K.J.P.B.

6}

7)

8)

our code in and short circuit the protection check. Let's begin
here.

Rel oad the 1985 file to provide fresh undecrypted code

<L" 198*" 08 > . First let's nove the decrypter to the
out si de bounds of this file. Since the file ends at $143F we can
nove it to $1440. Use the Transfer command < T 139B | 3BC 1440 >.
Di sassenbl e code at $1440 <D 1440> and cursor down through the
noved decrypter. You'll find the last byte, a $60 at $1461. This
will becone the new end address of this file.

Now t hat the decrypter has been noved, lets prepare the work
space. Fill the area from $1395-$13BC wi th NOPs

< F 1395 I3BC EA > . Now let's use the assenbler in Hesnon to
rewite the code in our work spot. A printout of the prior code
to conpare with our changes shoul d nmake the reasons for our
changes clear. W can start witing our code a $139A. Start by
usi ng the assenble comand < A 139A > . Here's the code to
wite.

A 139A JSR 1440 : Decrypt code from new decrypter |ocation.

JSR 1206 : Set up for protection. --code from here

LDA #3000 : Substitutes for protection --to here will
--repl ace

STA 1293 : check at $118E --the JSR 1184 at

JSR 1269 - - $l 3BD.

JMP 1300 : Junp around JSR 1184 at $13BD, which is no
| onger needed

When done, hit return a fewtines to a clear spot and
Di sassenbl e code and check to nmake sure the changes are correct

< D 139A > |f all is well, all that's left is to scratch the
old file and save the new. X to BASIC <X> and scratch the 1985
file. < OPEN5,8,15,"S0: 1985 " > Be sure to use two spaces

before 1985 and t hree spaces after. Wen done, hit Run/ Stop-
Restore to re-enter the nonitor and save the new 1985 file. CQur
new start/end addresses are $l 000-$1461+1

< S " 1985 " 08 1000 1462 > You're backup is now conpletely
broken and may be fast copied. You can't file copy this title
because of the various Bl ock-Executes used in the | oader for the
fast load routine as well as protection checks. These

Bl ock- Execut es access code not allocated by directory files.

TRIO : SOFTSYNC

Pr ocedur e:

Loading the original disk produces a rattle free load, and an

K.J. REVEALED TRILOGY PAGE [36] (c) 1990 K.J.P.B.

error scan shows no standard errors. A backup nade with the C 64
Fast Copi er produces a non working copy. A backup nade with a
nybbl er produces the sane non working backup. Before starting to
work on this program please nmake a (non worki ng) backup of the
original, and a disk log to log the file addresses. Pl ease note
the XEMAG 2.0 in the directory header. This is the signal to you
of Fat-track protection.

Wor ki ng vith your backup

1

2)

3)

4)

Let's start by plugging Hesnmon in the cartridge port and | oadi ng
the boot < L "*" 08 > . Checking with the disk |log, start

di sassenbly of code at $02A7 <D 02A7> and cursor down through
the code. The code from $02C3 to $02C9 loads in a file with 7
characters in it's nane. Interpret nmenory at $02A7 [I 02A7] to
see that file nanme. You'll find a name using a conbination of
regul ar and reverse characters. Again di sassenble nenory at
$02A7 <D 02A7> and cursor down through the code. At $02F7 you'l
find a jump to $A483 which causes BASIC to execute.

Power off and on again. Wen the nonitor appears, <X> to BASIC
and load and list the directory < LOAD "$",8 > . Near the end,
you'll find the file with regular and reverse characters. Load
that file directly fromthe directory with a <,8:> . \Wen the
READY pronpt comes up, cursor down to a clear spot and list that
file. Examination of this file shows that it |oads and runs the
TRIO CALC, TRIO WORD, OR TRI O FI LE dependi ng on the nmenu choi ce
pi cked by the user

Again cursor down to a clear spot and | oad TRI O FI LE

< LOAD "TRIO FILE",8: > . List out this file for exani nation.
This program |l oads the file TRI O3, does a sys 32768 ($8000) to
it, cones back, and reads drive nenory at $0 FF and conpares the
value there to a (2 up arrow 8-1) which is a deciml 255 or $FF
If the value is not equal to an $FF, a NEWoccurs which crashes
the program If it is equal to $FF then the programfalls
through to a GOTO 70. (You'll find simlar progranming in the
TRIO WORD and TRIO CALC files.)

Because the file TRI3 resides at $8000, which is where our
Hesnon cartridge resides, we nust use a different nonitor. Turn
off the computer and pull the Hesnon. Fromthe Wility Disk

| oad the $2000 nonitor < LOAD "8192",8,1 > . WHEN THE READY
pronpt comes up, sys the nonitor in <SYS 8192> . Load the TRI O3
file fromthe TRI O backup <L NTRI GBI I, 08> and start disassenbly
at $8000 <D 8000> . The code from $8000 to $8036 does a BLOCK
EXECUTE to Track 35/Sector 10/. $8037 to $8062 NEMORY READS the
drive at location $OLFF and conpares to an $FF. If the value is
not equal to an $FF, then a branch to $8070 takes place. To see
what happens, cursor to a clear spot and do a Go $8070 <G 8070>

K.J. REVEALED TRILOGY PAGE [37] (c) 1990 K.J.P.B.

5)

6)

Wien done, hit Run/ Stop-Restore and again sys the nonitor in
with <SYS 8192> . Again disassenble code at $8000 and cursor
down through the code. You'll find that if the conparison to $FF
is satisfactory, the programming falls through to $808B, which
is a JUW to $FFC3. This is a KERNAL routine that when JUWPed
to, does a RTS which in this case returns the program fl ow back
to the basic program (TRIO FILE in this case.).

Turn the conputer off, insert the Hesnon, and power up again. X
to BASIC <X> and fromthe Utility Disk, load the Block Read file
< LOAD'BLCCK READ',8 > . Wien the ready pronpt conmes up. LIST
the file and on line 10 set the TRack variable to 35 and the
SEctor variable to 10. Hit RETURN to | ock your changes in and
relist the file to check your changes. This utility will now

Bl ock Read Track 35/Sector 10 and send the code to $CO00 in the
conmput er where we can inspect it. Place the backup in the drive
and start the Bl ock Read by Typing RUN and hitting RETURN. The
drive will spin and in about 30 seconds, the READY pronpt will
appear. Return to the nmonitor by hitting Run/ Stop-Restore.

Di sassenbl e code at $CO00 <D COOO> . Cursor down through the
code. The code from $CO00 $COLO i s the decryptor and will have
to be executed before we can inspect the drive code. You'll see
that it is set to decrypt this code in the $0400 Buffer in the
drive and nust be readdressed to decrypt at $COO0. Using the
Menory Conmand, change the 04 at $0005 and $COOB to Co. Notice
the ADC $08 at $C007. This instruction uses the value in the
drive at location $08 to hel p decrypt this code. The | ocation
$08 is the track value last |oaded into the Buffer at $0400. W
know that this was track 35 (renenber the BLOCK EXECUTE to Track
35/ Sector 10). Let's change the instruction froma ADC $08 to a
ADC #$23. W are now using the known val ue of $23 (deci mal 35)
and not using any values in drive nenory. The bytes for this
instruction change are $69, $23. Use the MEMORY conmand to nake
your changes at $C007 < M Q007 >. Agai n di sassenble nenory at
$CO00 and cursor down through the code to check to see the
changes are correct.

Let's execute the decrypter and inspect code. Type <G COd >, and
when the nonitor breaks, disassenble code at $CO00 <D COOC> and
cursor down through the code. The code from $COL1- $C043 checks
Track 35, bunps the head a half track and if the check is
satisfactory, stores a 0 in $0009. The instruction at $C044

| oads the accumulator with the value in $0009. Next, if that
value is not a 0, the code branches around the next two
instructions. These are the keys to the protection. The val ue of
$FF is stored at $OLFF in the drive nenory. Later a Menory Read
in the conputer code will check for the $FF and if it is in

pl ace at $A FF, the protection check will be passed. Qur job now
is to force this routine to pass even if the protection isn't in
pl ace.

K.J. REVEALED TRILOGY PAGE [38] (c) 1990 K.J.P.B.

7) One way to break this code is to wite a sinple routine to place
an $FF in drive location $OLFF and return to the progranm ng
that sent it in the first place. This is acconplished sinply.
Cursor down to a clear spot and go into the ASSEMBLY node by
typing <A COOO> . Here's the code:

A COOO LDA #$FF <RET> (A9 FF)
A C002 STA O1FF <RET> (8D FF 01)
A COOS RTS <RET> (60)

Wien done, cursor down to a clear spot and di sassenble at $CO00
[D COOQ to see the bytes needed. You'll find the follow ng six
bytes: A9 FF 8D FF O 60. You can use the hex to deci nal
converter in Hesnon to convert the bytes to deci nal

<$A9 RET, and so on>. You'll find that the following is the
deci mal equivalent: 169 255 141 255 A 96

8) Fromthe Utility Disk, load and run the Di sk Doctor. Place the
backup in the drive and using the b [b] comuand read in Track
35/ Sector 10. Starting at position $00, wite in the six bytes.
You nay use the @conmand to wite themone at a tine in Decinal
(169 255 141 255 A 96). When the changes have been nmade, hit r
<r>torewite the block and y <y> for yes. This title is now
broken from protection, and nay be fast copied. Because of the
Bl ock Execute to Track 35/ Sector 10, you may not file copy this
title. The drive code, even though broken, mnmust be in place on
t he di sk.

ALI ENS : ACTI VI SI ON

Loading the original produces a rattle-free |oad, and an error
scanner shows no standard errors. A backup nade with the C 64 Fast
Copi er produces a non-working copy. A nybbled backup produces the
sane non-wor ki ng copy. Before starting to work on this program

pl ease nake a (non-working) backup of the original, and a disk |og
to log the file addresses.

1) Turn off your conputer and insert your reset button assenbly
into the cartridge port. Turn on the conputer again. Load the
$COO0 nonitor fromyour Uility Disk < LOAD'49152",8,1 > At the
conpl etion of the load, type < SY549152 > and hit < RETURN >,
The monitor should be active now

2) Wth your backup in the drive and the nonitor active, |oad the
boot file < L "0:*",08 > . Wien the load is conplete,
di sassenbl e nenory at $O2CB. You'll find a | oader routine that
| oads in the

K.J. REVEALED TRILOGY PAGE [39] (c) 1990 K.J.P.B.

3)

4)

5)

"ACTIVISION INC." file and junps to $8000.

Load the "ACTIVISION INC." file into nmenmory < L"A*",08 >. After
the load, start disassenbly of code at $8000 < D 8000 > . Also
do an ASCI| dunp < | 8000 > to check for DOS comands. Exam ne
the routines carefully. You will soon find a Bl ock-Execute
(B-E 2,0,18,7) drive command at $8CDD. Further exam nation of
the code reveals that the protection schene is doing a |ot of
direct access to the serial port at $DDOO.

The key to cracking this variation on Activision's standard
protection schene is to ignore this code because it has a rather
i nvolved loop that is a pain to follow and de-protect. Wth this
code, the drive is where the action's at. Let's take a cl oser

| ook at that Bl ock-Execute code on track/sector 18/7.

Reset the conputer and | oad ALI ENSLOADER fromthe Uility Disk
< LOAD "ALI ENSLOADER',8 >, < RUN > and follow the instructions.
Rel oad the 49152 nonitor and < SY549152 > . In the drive, the
code would be located at $0300. W& will be using $2300 (in the
conputer). Disassenble the code at $2300 < D 2300 > . The
routine at $2322 - $234A, despite it's apparent conplexity, does
not hi ng nore than |l oad the code in track/sector's 18/7 - 18/ 11
into drive nenory |ocations $0400 - $O7FF. The ALI ENSLOADER
routi ne has conveniently | oaded these for us already. The code,
from $2400 - $27FF, is encrypted. A routine at $2356 does the
decryption. W& can nodify the code to decrypt it for us by
sinply addi ng $2000 to the LDA and STA address references, i.e.
$0400 becones $2400, $0500 becomes $2500, etc..< A 2358 LDA
$2400,Y etc.. > . Also put a break command at $237F

< A 237F BRK > and run the code < G 2356 >

NOW exam ne the code starting at $2400 < D 2400 > . Mst of this
code is the fast Iloader. Armed with the know edge that
Activision fat tracks start with track 35 ($23), we find a

suspi cious routine at $24D0 - $24F8. This is it, folks. This
itty-bitty loop is the heart and soul of this protection schene.
It can be disabled easily with one byte change. Change the LDA
operand byte at $24DE from $80 to $01 < A 24DD LDA #$01 >.

I nstead of READI NG the intended sector, the $01 byte tells the
drive's DOS that the job was conpl eted successfully. This is
exactly what you want it to do. The fringe benefit of this

met hod is that the program | oads about 8 seconds faster and
you'll hear a pleasant clicking noise when the protection schene
executes the code with your byte change (when the screen

bl anks) .

Re-encrypt the code using the same routine at $2356 < G 2356 >
Before we load up the sector editor to wite the bytes back
let's | ook back at the decryption |oop at $2356 < D 2356 >

K.J. REVEALED TRILOGY PAGE [40] (c) 1990 K.J.P.B.

it's exchangi ng bytes between $2400) $2500 and $2600) $2700.
Qur changed byte (now $54) is at $25DE, -not- at $24DE. It wll
be witten to track/sector 18/ 9 at position $DE (222 decinal).

6) Now reset the conputer, re-insert the Uility D sk and rel oad
the sector editor < LOAD'DISK D*",8 > . Insert your backup and
[RUN]. Press the < B > key. Enter 18 < RETURN > and 9
< RETURN > to read in track/sector 18/ 9. Mve the cursor to
position 222 and press the @key. Enter 84 and press < RETURN >
To wite the nodified sector, press < Rand Y >

7) Reset and | oad the backup. It DOES |oad faster than the
original, doesn't it?

TRANSFORKKRS : ACTI VI SI ON
Pr ocedur e:

Loading the original produces a rattle-free |oad, and an error
scanner shows no standard errors. A backup nade with the C 64 Fast
Copi er produces a non-working copy. A nybbled backup produces the
sane non-wor ki ng copy. Before starting to work on this program

pl ease nake a (non-working) backup of the original, and a disk |og
to log the file addresses.

1) Turn off the conputer and insert your reset button assenbly
into the cartridge port. Turn on the conputer again and | oad the
$C000 nonitor fromyour Uility Disk < LOAD'49152",8,1 > . At
the conpletion of the | oad, type < 5Y549152 > and hit < RETURN>.
The monitor should be active now

2) Wth your backup in the drive and the nonitor active, |oad the
boot file < L"COP*",08 > . \Wen the load is conplete,
di sassenbl e nenory at $02EO0. You'll find a | oader routine that
loads in the " 1986 " file and junps to $0506.

3) Because the " 1986 " file loads into screen nmenory where we
normally can't look at it, we nmust first change the | oad address
to sonmething nore accessible. Reset the conputer, insert the
Utility Disk and |l oad the sector editor < LOAD "DISK D*",8 >
Insert your backup disk and < RUN > . Go to track/sector 18/01
< B 18 RETURN 1 RETURN >. Cursor over to position 35. The first
sector of "1986" is 17/01 ($11/A -hex). Junp to there <j >
Move to position 3, press the '@ key and change the byte $05 to
37 ($25) and press RETURN. This changes the | oad address to
$2500. Wite the sector back to disk < RY > and reset your
conput er.

K.J. REVEALED TRILOGY PAGE [41] (01990 K.J.P.B.

4) Again insert the Uility Disk and | oad and activate the 49152
monitor. Load the " 1986 " file into nenory < L "19*",08 >
After the load, start disassenbly of code at $2500 < D 2500 >
Al'so do an ASCI| dunmp < | 2500 > to check for DOS commands.
Examine the routines carefully. You wll soon find a
Bl ock- Execute (B-E 2,0,1,1) drive command at $271E. Further
exam nation of the code reveals that the protection schene is
doing a lot of direct access to the serial port at $DDOO. The
key to cracking this wvariation on Activision's standard
protection schene is to ignore this code because it has a rather
i nvolved loop that is a pain to follow and de-protect. Wth this
code, the drive is where the action's at. Let's take a cl oser
| ook ~t that Bl ock-Execute code on track/sector 1/1. (Before
going on to step five, change the | oad address of the " 1986 "
file back to $0500. Use the same procedure as outlined in step
3.

5) Reset the conmputer and | oad TRANSLOADER fromthe Wility Disk
< LOAD "TRANSLOADER' ,8 >, < RUN > and follow the instructions.
Rel oad the 49152 nonitor and < 5Y549152 > . In the drive, the
code would be located at $0300. W& will be using $2300 (in the
conputer). Disassenble the code at $2300 < D 2300 > . The
routine at $2321 - $2349, despite it's apparent conplexity, does
not hi ng nore than | oad the code in track/sector's 1/2 - 1/5 into
drive menory |ocations $0400 - $O7FF. The TRANSLOADER routi ne
has conveniently | oaded these for us already. The code, from
$2400 - $27FF is encrypted. A routine at $2355 does the
decryption. W& can nodify the code to decrypt it for us by
sinply addi ng $2000 to the LDA and STA address references, i.e.
$0400 becones $2400, $0500 becones $2500, etc... < A 2357 LDA
$2400,Y etc.. > . Also put a break command at $237E
< A 237E BRK > and run the code < G 2355 >

NOW exam ne the code starting at $2400 < D 2400 > . Mst of this
code is the fast Jloader. Armed with the know edge that
Activision fat tracks start with track 35 ($23), we find a

suspi cious routine at $24B4 - $250F. This is it, folks. This
itty-bitty loop is the heart and soul of this protection schene.
It can be disabled easily with one byte change. Change the LDA
operand byte at $24C2 from $80 to $01 < A 24Cl LDA #$0l >

I nstead of reading the intended sector, the $01 byte tells the
drive's DOS that the job was conpl eted successfully. This is
exactly what you want it to do. The fringe benefit of this

met hod is that the program | oads about 8 seconds faster and

you'll hear a pleasant clicking noise when the protection schene
executes the code with your byte change (when the title screen
appears).

6) Re-encrypt the code using the same routine at $2355 < G 2355 >
Before we load up the sector editor to wite the bytes back

K.J. REVEALED TRILOGY PAGE [42] (01990 K.J.P.B.

let's | ook back at the decryption |oop at $2355 < D 2355 >
it's exchangi ng bytes between $2400) $2500 and $2600) $2700.
Qur changed byte (now $54) is at $25C2, -not- at $24C2. It wll
be witten to track/sector 1/3 at position $C2 (194 decinal).

7) Now reset the conputer, re-insert the Uility D sk and rel oad
the sector editor < LOAD "DISK ?*",8 > . Insert your backup and
< RUN > . Press the [B] key. Enter 1 < RETURN > and 3 < RETURN >
to read in track/sector 1/3. Mve the cursor to position 194 and
press the < @> key. Enter 84 and press < RETURN > . To wite
the nodified sector, press < R>and <Y >

8) Reset and |l oad the backup. It DOES |oad faster than the
original, doesn't it?

I NTRO : PROTECTI ON SCHEME TYPE D

When this protection scheme was first introduced, the copy
progranms avail abl e were unable to backup any software that used
it.

Most of the nybble utilities on the market today have the
capability of producing a backup. This schene is usually referred
to as the "long sector". The following sinmlarities are
characteristic of this protection. A nybble utility can back up
the title, while a fast copier can't. The load is rattle free and
snooth. An error scan produces a nunber twenty read error on the
| ast sector of any particular track.

This protection is based on placing an extra sector on any

chosen track (sometimes nore than one track) on the original disk
This sector contains one block of valid programdata. A non-nybbler
or file copy utility will not pick up this sector, because it is
not standard disk format. This will prevent the program from
operating properly. Qur job in each of the followi ng prograns wll
be to gather the block of data and place it in the programat the
proper | ocation.

The protection itself is nothing nore than a special Bl ock Read
set up to read the non-standard bl ock of data. The routine al nost
al ways starts out as an encrypted bl ock. This block begins as a
decryption routine that decrypts one block of data. This, in turn
reveal s a protection check that does nothing nore than read in the
| ong sector and place that |long sector data directly over itself.
By doing this, the valid code conpletely hides the protection
check itself.

Recogni zi ng the decryption routine is the best way to |l ocate the
protection check. Once located, we will start the routine up and

K.J. REVEALED TRILOGY PAGE [43) (C) 1990 X.J.P.B.

let it gather the data we need to break the title. Then a sinple
menory save is all that's needed to conplete the job.

The benefit of breaking the prograns using this protection
scheme is the fact that alnost all of themare file copyable
afterwards. This neans they can be placed on a disk wth other
pr ogr ams.

Pl ease note that this protection scheme is very inportant to
understand. The reason for this is the fact that there is a new
scheme now on the nmarket that very closely resenbles it. This new
schene is NOT copyable by any nybble utility and nust be hand
broken. You'll find this new schenme discussed in the next

chapt er.

| MPCSSI BLE M SSI ON : EPYX
Pr ocedur e:

Loading the original produces a rattle free |oad, and an error
scan shows a nunber twenty error on track 16, sector 20. A backup
made with the C 64 Fast Copier provides a non-working backup
Nybble utilities are capable of providing a backup. Loading the
backup results in a load that stalls rather quickly. W can assumne
the protection is in the |oader file. Before starting to work on
this title, please nake a backup and do a disk log (print-out is
best).

wor ki ng with your original

1) Turn off your conputer and insert your reset button assenbly
into the cartridge port. Turn the conputer on again and, from
the utility disk, |oad the $8000 nonitor <> LOAD "32768",8,1 <>.
Sys the nmonitor in with SYS 32768 and hit RETURN. Let's begin by
| oadi ng and inspecting the boot file <> L "RUN ME',08 <>. At the
end of the |oad, start disassenbly at $02A7 (D 02A7). Scrol
down through the code and notice that the boot |oads the file
LOADER (LO*) and junps to $BOOO.

2) Load the LOADER file <> L "LO*",08 <>. Because this tile
resides in the BASIC interpreter |ocation, we nust turn BASIC
of f before we can exani ne any code. Change address |ocation
$0001 from 37 (77 on C-128) to 36 (76 on C-128). Use the MEMORY
command (M 0001) to nmake your change. Wen the change has been
made, we can inspect the code begi nning at $BOOO

3) Disassenble starting at $BO0OO (D BOOO) and inspect the code from
$BOOO to BOOF. This is a decryption routine and is the heart of
this protection schenme, as discussed in the introduction. Qur

K.J. REVEALED TRILOGY PAGE [44] (01990 K.J.P.B.

job will be to trade the protection code for the valid program
code. Believe it or not, this is the easy part.

4) Make sure you have a wite protect on your ORIG NAL and that the
original is in the disk drive. Start the program worki ng by
typing GO BOOO and hit RETURN. The drive should start up and, a
few nmonents later, the screen should change colors. At this
point, reset your conputer and turn the disk drive off and on
agai n. Re-SYS the nonitor back in (SYS 32768) and again turn off
BASI C as described above. Disassenble code at $BOCO (D BOQOO)
agai n and note that the code has, indeed, changed. The encrypted
code has been replaced with | oader code. Al that's left nowis
to save the file back to the backup

Wor ki ng with your backup

5) Checking the disk log provides the start and endi ng addresses
($BOOO $BI A2) to the LOADER file. Wen saving it, be sure to add
one byte to the end address <> S "@: LOADER", 08, BOOO, Bl A3 <>

Your backup is now protection free and may be file copied. One
smal | problemrenmains. That is the directory. The repair for this
is sinple. Using the Nane/ld Changer on the utility disk, change
the di sk name AND the I D nunber. You nust use five figures when
changi ng the I D nunber. For exanple, you could nane the disk

| MPCSSI BLE and renunber it I M2A. Wen this is conpleted, your
break will be conplete and even the directory can be 'viewed.

BREAK DANCE : EPYX
Pr ocedur e:

Loading the original produces a rattle free |oad, and an error
scan shows a nunber twenty error on track 16, sector 20 and track
15, sector 20. A backup nade with the C 64 Fast Copier provides a
non-wor ki ng backup. Nybble utilities are capable of providing a
backup. Before starting to work on this title, please nake a
backup and do a disk log (print-out is best).

Wor ki ng with your original

1) Turn of f your conputer and insert the reset assenbly into the
cartridge port. Turn your conputer on again. Fromyour utility
di sk, load the $8000 nmonitor <> LOAD "32768" ,8,1 <> Now, type
NEW and hit RETURN. Wen | oading the boot file on this disk, it
wi || autoboot and continue running. In order to inspect it,
here's a trick to use. We're going to |load the autoboot into
BASI C menory for the purposes of inspection. Load the boot file

K.J. REVEALED TRILOGY PAGE [45] (01990 K.J.P.B.

2)

this way: <> LOAD "BOOT",8 <>. Wen the load is conplete (you
may have to hit RUNSTOP/ RESTORE), sys the nmonitor in with SYS
32768 and hit RETURN. You can now find the boot file in BASIC
nenory at $0801. Interpret nmenory and scroll down from $0801 (
0801). Notice the INTRO. Disassenbly of nenory at $0801 (D 0801)
and scrolling down reveals a loader file that |oads the I NTRO
file and junps to $2015.

Load the INTROfile <> L "INTRO',08 <> Start by disassenbling
nenory at $2015 (D 2015). Scroll down through menory, and at
$201A note the JSR $26B9. Di sassenble $26B9 (D 26B9). Here we
find the decryption routine that is the heart of this protection
scheme. Refer to the Introduction for general information on
this. Qur task is to replace the encrypted data with valid
programdata. This is relatively easy. Be sure you have a wite
protect on your original and that the ORIGANAL is in the drive
Type G 26B9 to start the programup. The drive will run for a
short time, and then stall. Wen the drive stops, reset the
conputer and re-SYS the nmonitor back in (SYS 32768). Disassenble
nenory at $26B9 again and notice that the code has indeed
changed. This is the valid programcode we needed for the break

Wor ki ng with your backup

3)

4)

5)

6)

Now, all that's left is to save the retrieved data back to the
backup. Checking the disk log provides the start and end

addr esses of $2000-2A00. Be sure to add one byte to the end
address and save it to the backup

<> S "@: | NTRO', 08, 2000, 2A01 <>,

Turn the conputer off and on, and boot up your backup. It should
load past the point that it |oaded before our break
Unfortunately, It still refuses to load fully. Renenber, we did
find two separate nunber twenty errors on the original. W have
di sabl ed half of the protection, nowlet's do the rest.

Rel oad the $8000 nonitor <> LOAD "32768",8,1 <> Sys it in with
SYS 32768. Fromthe hal f broken BACKUP, reload the INTRO file

<> L "INTRO' 08 <> . Again, start your disassenbly at $2015

(D 2015). Scroll down, and try to follow the programflow At
$2140 you'll find a JUMP $COO0. Using the MEMORY conmmand change
the 4C at $2140 (M 2140) to 00 and hit RETURN. This will stop or
BREAK the program flow just before it junps to $CO00, all ow ng
us to inspect nmenory in the LOADER file. Activate the INTRO file
by typing GO 2015.

Wien the drive stops, reset the conmputer and rel oad your $8000
nonitor <> LOAD "32768",8,1 <> . Sys it in with SYS 32768. Start
by di sassenbling the code at $CO0O (D COO00). You'll find a junp
to $0024. Disassenbly of $0024 reveals another decryption

K.J. REVEALED TRILOGY PAGE [46] (01990 K.J.P.B.

schene. This is the second protection routine.
Wor ki ng with your original

7) Place the original disk in the drive and Type GO C024 to start
the program up. The drive should start up and in a short tine
the ganme nenu will cone on the screen. At this point, reset the
conmputer and re-SYS the nonitor back in with SYS 32768.

Wor ki ng with your backup

8) Checking the disk log provides us with the start and end address
of the LOADER file. Again, remenber to add an extra byte to the
end address. Save it back to your BACKUP
<> S "@: LOADER", 08, COOO, CF81 <>. \Wen the save is conplete your
backup will be conpletely broken. One snall problemrenains. The
directory cannot be read properly. To fix it easily, just use
the NAVE/ I D CHANCER on your utility disk. Be sure to use five
figures when you give it a new I D nunber. For exanple, you could
nane it BREAK DANCE and renunber it BD 2A.

Pl T$TOP |1 : EPYX
Pr ocedur e:

Loading the original produces a rattle free |oad, and an error
scan shows a nunber twenty error on track 16, sector 20. A
backup made with the C 64 Fast Copier provides a non-working
backup. Nybble utilities are capable of providing a backup
Before starting to work on this title, please make a backup
format a bl ank work di sk, and do a disk log (print-out is best).

Wor ki ng with your original

1) Turn off your conputer and insert your reset button assenbly
into the cartridge port. Turn the conputer on again and, from
the utility disk, |load the $C000 nonitor <> LOAD "49152",8,1 <>,
Sys the nmonitor in with SYS 49152 and hit RETURN. Let's begin by
| oadi ng and inspecting the boot file <> L "PITSTOP",08 <>. At
the end of the load, start disassenbly at $02A7 (D 02A7). Scrol
down through the code and notice that the boot |oads the file
RUN ME and junps to $0820.

2) Load the RUN ME file <> L "RUN ME",08 <> . Disassenble nenory
starting at $0820 (D 0820) and scroll down through the code.
This file loads all gane files and then at $08E4 does a junp to
$9403. The disk log tells us this address is located in the PITS
file. Load the PITS file <> L "1PITS",08 <>. Wen the load is

K.J. REVEALED TRILOGY PAGE [47] (01990 K.J.P.B.

3)

conpl ete, we can start our inspection at $9403.

Because this file occupies menory in the BASIC interpreter
($A000 $BFFF), we have to turn BASIC off. This can be
acconpl i shed by changi ng $0001 froma 37 (77 on the C-128) to a
36 (76 on the C-128). Use the MEMORY command to nake your
changes (M 0001). Wen done, start disassenbly at $9403

(D 9403). You'll find a decryption schene at this |ocation
($9403-$9412) that is the heart of this protection schene (see
the Introduction). Make sure your ORIG NAL has a wite protect
tab on it and is in the drive. Start the program working by
typing G 9403 and hit RETURN. The drive should start up and a
few nmonents | ater, the ganme nmenu should cone on the screen. At
this point, reset your conputer and renpve the original disk
fromthe drive. Fromthe utility disk, reboot the $COOO nonitor
and sys it in again (SYS 49152). Again turn off BASIC. Now place
your formatted work disk in the drive and save the changed code
from $9403-$9512 <> S "SECTCR"', 08, 9403, 9512 <> Wen the save
is conplete, renpve the work disk fromthe drive

Wor ki ng with your backup

4)

Al

Bl

d

D]

El

Compl ete the break by followi ng the steps bel ow
Reset the conputer. Place your backup in the drive and
scratch the PITS file <> OPEN 5, 8,15,"S0: PITS" <>. Re-SYS the
noni tor back in (SYS 49152).
Fromthe original disk, load the PITS file <> L "PITS", 08 <>.
From the work di sk, |load the saved SECTOR file
<> L "SECTOR',08 <>. This will lay the code retrieved from
the break process over the encrypted protection check code.

Turn off BASIC agai n as described above.

Pl ace your backup in the drive and save the PITS file now in
menory <> S "PITS", 08, 1 000, COOO <>,

Your Backup is now broken. All that's left is to repair the
directory. This can be acconplished easily with the NAME/ I D
CHANGER on the utility disk. Be sure to use five figures in the new

I D

nunber. For exanple, you could nane the disk PITSTOP and

renunber it PS-11. Wien this is conplete, you can view the
directory and file copy this title.

K. J.

REVEALED TRILOGY PAGE [48] (01990 K.J.P.B.

THE BODY TRANSPARENT : DESI GNWARE

Loading the original produces a rattle free |oad, and an error
scan shows a nunber twenty error on track 32, sector 16. A backup
made with the C 64 Fast Copier provides a non-working backup
Nybbl e utilities are capable of providing a backup. Before
starting to work on this title, please nake a Three M nute Backup
and do a disk log (print-out is best).

Wor ki ng with your backup

1) Let's begin our break by preparing the backup to receive the
changes we will be making. Fromyour utility disk, load the
NAME/ | D Changer and renane and re-I1D your backup. Be sure to use
five figures in the new ID. For exanple, you could nane the
backup BODY TRANS and nunber it BT-2A. This will nake the
directory listable.

2) Because this program does not use directory files to store
i nformati on, we run the risk of overwriting program code when we
save our changes to the backup. There is a sure way to avoid
this. That is to allocate or use all available blocks in the
BAM What we are going to do is fool the drive into believing
that there are no blocks free on the disk. Wien we scratch a
file, the blocks used by THAT file will becone free for use.
Then when we save that file back to the disk, they will be
pl aced on the exact same bl ocks that they came from

3) Fromthe utility disk, load and run DI SK DR Place the backup in
the drive and press RETURN to get to track 18, sector 1. Press -
to go to track 18, sector 0. This is the BAM Sector and here is
where we will allocate all blocks. Use the cursor key to cursor
to position 4 (all references will be in decinal). Wth the
cursor on position 4 press the @key and then press 0. Repeat
the @key and 0 key until all values fromposition 4 through 71
are changed to zero. This takes care of tracks 1 through 17. Now
cursor over to position 76 and do the same changes from position
76 through 143. This will take care of tracks 19 through 35.

Now, to nake the changes to the disk, press R and then Y and hit
RETURN. The new BAMis now on the backup. Your backup is now
ready to receive new information. Load the directory and check
it. You should have a listable directory with zero bl ocks free.

Wor ki ng with your original
4) Turn off the conputer and insert the reset assenbly into the

K.J. REVEALED TRILOGY PAGE (49] (01990 K.J.P.B.

cartridge port. Turn the conputer on again and | oad the boot
file fromthe original <> LOAD "DWARF",8: <>. You can list this
file and inspect it. You'll find it loads the file called BOOT2
and then a SYS 49152 ($C0OQ0 .

5) Fromyour utility disk, |oad the~$2000 nonitor
<> LOAD "8192",8,1 <>. Sys it in with SYS 8192. Now | oad the
BOOT2 file <> L "BOOT2"108 <> and start disassenbly at $cooo
(D COO0). The first instruction at $CO00 is a JSR to $C028.
Di sassenbl e $C028 (D C028) and here you'll find the decryption
routine that is the heart of this protection schene. It resides
from $0028 to $C037. The break itself is very sinple. Make sure
you have a wite protect tab on the ORIA NAL and that it is in
the drive. Start the program by typing G C028 and press RETURN.
The drive will spin for a short time and then stop. At this
point, reset the conputer and re-SYS the nonitor back in wth
SYS 8192. Again di sassenbl e code at $C028. You should find new
code in the place of the encrypted code. Al that's left is to
save this broken | oader back to the backup.

wor ki ng with your backup

6) Reset the computer and place your prepared backup in the drive
Scratch the BOOT2 file <> OPEN 5, 8, 15, "S0: BOOT2" <> . Re-SYS the
monitor in with SYS 8192. The disk |og provides the start and
end addresses of the BOOT2 file. Be sure to add one byte to the
end address. Wth your backup in the drive, save the BOOT2 file
back to the backup <> S "BOOr2", 08, COOQ, C151 <>

Your backup is conpletely broken and can now be copied with any
whol e di sk copier. Unfortunately, it renmains non-file copyable
because of the way the programers set up the disk files.

I NTRO : PROTECTI ON SCHEME TYPE K

This protection scheme is, at this witing, one of the nost
effective and prevalent nethods of defeating today's nybble
copi ers. Wien you know what to |l ook for, you'll find this scheme
is being enployed by many different software houses. | like to
think of this protection as the "big brother" of the |ong sectors
di scussed in the previous section

This schenme can be recogni zed by the following simlarities. Wen a
di sk error check is done, no wite errors will be found on the
original. \Wen booted, no drive rattle will be encountered. The
program cannot be backed up with either a fast copier or a nybbler
Usually, you will find data in the directory other than nornal

K.J. REVEALED TRILOGY PAGE [50] (01990 K.J.P.B.

directory data. Most inportant: when tracing the programthrough
it's loading process, you will generally run into a decryption
routine and a sector or two of encrypted code.

When this encryption is |ocated, you can be sure it is hiding the
protection check code.

Remenber, | stated that a sector or two in nenmory will be
encrypted, and that this area in nenory surely contained
the protection check. Well, one other thing needs to be
nment i oned.

This is the fact that this encrypted nenory starts out as garbled
code, then decrypts into a protection check routine and finally
after the protection check has been satisfied, is REPLACED with
val id prograncode. This code, as previously stated, is one or two
sectors in length and can be found anywhere on the program di sk
You'll find that the directory track (track 18) is the nost likely
spot. In nost cases, we can let the programinsert the hidden code
init's proper place. Then a nmenory save and repl acenent over the
encrypted code in the proper file will not only defeat protection
but will totally renove the check for it.

Most of the prograns protected with this schenme can be
defeated with a sinple nmenory save, but a few have had to
have sone of the code re-witten by hand. This is
relatively unconmon and cannot be explained in the scope
of this manual

Experience will prove to be the best teacher.

Before starting to work on the follow ng prograns, please
do a disk file log (print out is best), fornmat a bl ank
wor k di sk, and have a (non-working) backup avail abl e.

Pl ease make sure you have a wite protect tab on your
original programdisk as you will be using it in the
breaki ng process. Now let's get on to the specifics.

| NFI LTRATOR : NI NDSCAPE
Pr ocedur e:

Loading the original produces a rattle free |oad, and an
error scan shows no standard errors. A backup nade with
the C- 64 Fast Copier provides a non-working backup. Nybble
utilities also provide a non-working backup. Loading the
backup results in a load that stalls rather quickly. W
can assune the protection is in the |loader file. Before
starting to work on this title, please nmake a backup and a
disk log (printout is best).

wor ki ng with your original

1) Place a wite protect tab on your original to
protect it during the breaking process.

K.J. REVEALED TR LOGY PAGE [51] (C) 1990 K.J.P.B.

2) Turn off your conputer and insert the reset assenbly into
the cartridge port. Turn your conputer on again. Fromyour utility
di sk, load the $C000 nmonitor <> LOAD "49152",8,1 <>. Wen the

load is conplete, sys the nonitor in with SYS 49152. Wen

| oadi ng the boot file on this disk, it will autoboot and

continue running. In order to inspect it, here's a trick to use.
We're going to |l oad the autoboot in BASIC nenory for the

pur poses of inspection. Wth the nonitor active, type X and hit
RETURN. You are now back to BASIC. Type NEWand hit RETURN. Now

| oad the boot file this way: <> LOAD "INFILT*",8 <>. \Wen the
load is conplete, return to the nonitor by hitting
RUNSTOP/ RESTORE. Then re-SYS the nmonitor back in with SYS 49152,
You can now find the boot file in BASIC nenory at $0801

Interpret nenory and scroll down from $0801 (I 0801). Notice the

I NTRO. Disassenbly of nenory at $0801 (D 0801) and scrolling

down reveals a |l oader file at $082D $0854. This |oader |oads the
INTRO file and junps to $0880.

3) Load the INTROfile <> L "INTRO',08 <>. Wen the load is
conpl ete, disassenble nenory at $0880 (D 0880). Scroll down
through nmenory to $089A. You'll find a JSR 0A25. Disassenble
$0A25 (D 0A25) and scroll down to $0A25. Here you'll find a JSR
0C18. Disassenble $0C18 (D 0C18) and notice that we have j ust
run into a decryption routine. Inspect this routine because this
is the heart of this protection scheme. Scroll down through the
code and notice that it is garbled for about one sector
($0C18-$0D18). As mentioned in the introduction, this code is an
encrypted protection schene that will decrypt into a protection
checker and then | oad valid programcode over itself. This will
not only allow the programto operate properly, but will also

hi de the protection code fromthe curious.

4) The break is fairly sinple now that we know where the
protection is. Start the program code up by typing G 0Cl18 and hit
RETURN.

The drive should start up and run for a short time. Wen the
drive stops, turn the drive OFF and ON again and reset the
conputer with your reset button. Restart the nonitor by again
typing SYS 49152 an hit RETURN. Now go back and di sassenbl e code
at $0C18 again (D 0C18). Surprise; the code has changed into
good code. To get an idea what is there, interpret nenory at
$0C18 (I 0C18) and scroll down through nenory. You'll see that
this is the conpletion of the |oader file. Al the data needed
to run the loader file properly is nowin nenory. Al that is
left to do is replace the INTRO file on the disk with the | NTRO
file NOWin nmenory. This can be acconplished with a snall nenory
save. Fromthe disk log, we know that the INTROfile starts at
$0880 and ends at $16C3. Renove the original disk fromthe drive
and insert your backup in it's place. Replace the INTRO file now
in nmenory with the one now on your disk. Renenber to add one
byte to the ending address <> S'"@: | NTRO', 08, 0880, 16C4 <>.

K.J. REVEALED TR LOGY PAGE [52] (C) 1990 K.J.P.B.

5} Your backup is now broken and will not even check for
protection. For those wishing to | ook at the protection check
code, redo the steps above but when you type G OO 8, reset the
conmputer in about one second. If the drive is allowed to run
nmore than a nonment or two, the protection code will be hidden.

BOP ' N WRESTLE : KI NDSCAPE
Pr ocedur e:

Loading the original produces a rattle free |load, and an error scan
shows no standard errors. A backup nmade with the C 64 Fast Copier
provi des a non-wor ki ng backup. Nybble utilities also provide a
non-wor ki ng backup. Before starting to work on this title, please
make a backup, format a blank disk, and do a disk log (printout is
best).

Wor ki ng with your original

1) Make sure a wite protect tab is on your original to
protect it during the breaki ng process.

2) Turn of f your conmputer and insert the reset assenbly into
the cartridge port. Turn your conputer on again. Fromyour utility
di sk, load the $2000 nmonitor <> LOAD "8192",8,1 <>. Wien the | oad
is conplete, sys the nmonitor in with SYS 8192. Wen | oading the
boot file on this disk, it will autoboot and continue running. In
order to inspect it, here's a trick to use. We're going to |oad

t he aut oboot in BASIC nenory for the purposes of inspection. Wth
the monitor ~ctive, type X and hit RETURN. You are now back to
BASI C. Type NEWand hit RETURN. Now | oad the boot file this way:
<> LOAD "BL",8 <>. When the load is conplete, return to the
nonitor by hitting RUNSTOP/ RESTORE then re-SYS the nonitor back in
with SYS 8192. You can now find the boot file in BASIC nenory at
$0801. Interpret nmenory and scroll down from $0801 (I 0801).

Noti ce the BOPI

Di sassenbly of menory at $0801 (D 0801) and scrolling down reveals
a |loader file at $082D- $0854. This | oader |oads the BOPI file and
junps to $0816.

3) Load the BOPl file <> L "BOPI",08 <>. When the load is
conpl ete, disassenble nmenory at $0816 (D 0816). Scroll down

t hrough nenory to $0889. You'll find a JMP COOO. Using the MEMORY
command (MD889), place a 00 (BRK) at $0889. If we start the code
running from$0816 it will execute and stop just before it would
have junped to $CO00. W can then disassenble nenory at $CO00 and
trace the programflow Use the GO conmmand to execute this code
(G 0816).

K.J. REVEALED TR LOGY PAGE [53] (C) 1990 K.J.P.B.

4) The load will resunme and the LOGO file and LOADALL file
will be | oaded. When the programstalls, reset out and reboot your
monitor fromthe utility disk <> LOAD'8192",8,1 <>. Wen the
load is conplete, sys the nmonitor in with SYS 8192. Disassenble
code at $C000 (D CO00) now and scroll down through nenory.
you'll find a very long | oader file. Wen you reach the code at
$C27A you'll find a JMP C3FD. Disassenbly of C3FD shows no valid
code so this is a likely spot to place another break in the
program flow. Using the MEMORY command (N C27A), place a OO
(BRK) at $C27A. Now restart the programwi th another GO conmand
(G C000). When the programstalls out, reset the conputer again
and rel oad and activate your 2000 nonitor <> LOAD'8192",8,| <>.
Now we can di sassenbl e nenory at $C3FD and again follow the
program flow (D C3FD). This returns a JW to 0B40. Di sassenbly
of nmenmory at $0B40 reveal s the decryption code that we di scussed
in the introduction. This is the heart of this protection
schenme.

5) Let's execute the code at $0B40. Make sure your origina
isinthe drive. Start up the code with G 0B40. The drive should
start up and soon stall again. Reset out, re-SYS your nonitor in
(SYS 49152), and di sassenbl e code again starting at $0B40. You'l
now find different code. Renove the original copy and pl ace your
formatted work disk in the drive. W can now save this new code

to our work disk <> S "CCODE", 08, 0B40, 0C52 <>.

wor ki ng with your backup

6) We now have the code necessary to break this title. Now we
have to place it on the disk in the proper spot. Checking the disk
log, we find the files LOGO BNKI2A, TITLE, and BOPl all have

the correct addressing to be likely places for this file. W

must | oad and check in each one with our nonitor the address
$0B40. The file BNKI2A turns out to be the correct file. Now al
that is left is to place our changed code over the origina

code. Because BNKI 28 begins in screen nenory, we will have to

pull a few tricks out of the bag to replace our revised code.
Remenber, this file starts in screen nenory, and we can't save
screen nenory properly. Follow these steps and try to reason

them out as we go through them

A) Load DI SK DR fromyour utility disk. Wen the cursor
reappears, type RUN and hit RETURN. Pl ace your backup in the
drive and hit RETURN. You'll be shown track 18, sector 1. The
jump link to the BNH 2A file is at position 195. Cursor over
to position 195 and hit the J key. You will be taken to the
first sector in the file. The first four bytes in the file
are the pointer bytes. W want to change the program address
from $0400 to $0900, so cursor over to position 3 and hit the
@key. Now, hit the 9 and press RETURN. Ht the R key to make

K.J. REVEALED TR LOGY PAGE [54] (C) 1990 K.J.P.B.

t he change to the backup

B) Reset the conputer and | oad the $COOO nonitor from your
utility disk <>LOAD'49152",8,1 <> Sys it in with SYS 49152.
Now, fromyour formatted disk, |load the CODE file

<> L"CODE",08 <>. W nowwill transfer it to a holding spot

in nmenory, for later use <> T 0B40 0C50 7B40. This will send
the code to $7B40

O Now from the BACKUP | oad the altered file BND 28
<> L"BNDI 28",08 <>. Renenber, it will now load five sectors
ahead of it's normal spot (from $0400 to $0900). When the
load is conpl ete, disassenble the code at $1040. Again here
is our decryption routine.

D) Transfer the code we placed at $7B40 to its proper
place in the altered file <> T 7B40 7C50 1040 <>. Wen the
cursor reappears, check the code at $1040. It shoul d now contain
the new code we saved fromthe break

E) Save the altered file back to the backup
<> S "@: BNKI 2A", 08, 0900, 6101 <>. Note we are adding five
sectors to every address, plus one byte to the end address.

F) Now all that's left is to change the file address back
to $0400. Follow the same procedure as in step 6a, except change
the address pointer froman 09 to an 04.

You now have a conpl etely broken copy. The protection schene has
been totally w ped out.

PRI NT SHOP COVPANI ON : BRODERBUND

Loading the original produces a rattle free |load, and an error scan
shows no standard errors. A backup nmade with the C 64 Fast Copier
provi des a non-wor ki ng backup. Nybble utilities also provide a
non-wor ki ng backup. Before starting to work on this title,

pl ease nake a backup of both sides, and do a disk log (printout is
best).

I nmust adnit that this programwas fairly difficult to trace

t hrough the | oadi ng sequence. After several tries, it was time to
reason the situation out. Watching the backup load a fewtines lit
up the old nental light bulb. The | oad seemed conplete; the only
problem were the I CONS on the first menu screen. They were there,
but non-operative. Checking the directory provided the file | felt
deserved i nmedi ate attention.

K.J. REVEALED TR LOGY PAGE [55] (C) 1990 K.J.P.B.

Wrking with the original

1) Make sure to place wite protect tabs on the original to
protect it during the breaki ng process.

2) Turn the conputer off and insert your reset assenbly into
the cartridge port. Turn the conputer on again and from your
utility disk, load the $COO0 nonitor <> LOAD'49152",8,1 <>. Sys the
monitor in with SYS 49152, Renove the utility disk fromthe

drive and replace it with your original (Side A). Load the file
ICONS <> L "I CONS",08 <>, The disk log tells us this file

resides at $6000 in nenory, so let's start our disassenbly at

$6000 (D 6000). Cursor down through nenory and notice the
decryption scheme at $6005-$6012. Renenber from the
introduction, this is the heart of this protection schene.

3) Let's execute the code at the beginning of the decryption
scheme. Start it working with G 6005. The drive should start up
and in a short tine, stall again. Reset the conputer and re-SYS
the monitor back in with SYS 49152. Disassenble nenory at $6000
again. Cursor down through nmenory and notice the code HAS
changed. W now have all the data necessary in nmenory to break
this program Let's save our altered ICONS file back to the
backup.

Wor ki ng with your backup

4) Checking the disk 1 og shows that the |CONS file starts at
$6000 and ends at $69AD in nenory. Wth the backup in the drive,
save the ICONS file, remenbering to add one byte to the end address
<> S "@: | CONS", 08, 6000, 69AE <>. Now turn the di sk over and save
the file to Side B as well.

You nmay now | oad and check your backup. You'll find it to be
conpl etely broken, and now it can even be fast copied. For those
who want to see the actual protection check, you can go back

t hrough the sane steps as before. Wen you do the G 6005, just
reset out after about ONE second. If the drive is allowed to run
it will pick up the break data fromthe original, and hide the
protection check in nenory.

BANK STREET SPELLER : BRODERBUND

Pr ocedur e:

Loading the original produces a rattle free |load, and an error scan
shows no standard errors. A backup nmade with the C 64 Fast

K.J. REVEALED TR LOGY PAGE [56] (C) 1990 K.J.P.B.

Copi er provides a non-working backup. Nybble utilities also
provi de a non-wor ki ng backup. Before starting to work on this title
pl ease nake a backup, and do a disk log (printout is best).

Working vith the original

1) Make sure to place a wite protect tab on the original to
protect it during the breaki ng process.

2) Turn the conputer of f and insert your reset assenbly into
the cartridge port. Turn the conmputer on again and from your
utility disk, load the $CO00 nmonitor <> LOAD'COOO', 8,1 <>. Sys

the monitor in with SYS 49152. Renove the utility disk fromthe
drive and replace it with your original. Load the boot file BSS

<> L"BSS",08 <>, Using the disk log to guide us, let's

di sassenbl e nenory at $02C4 (D 02C4). Cursor down through nenory
and notice the | oader |loads the file BSSL and does a junp to

$7000. Let's load the BSSL file ourselves and follow the | oad
sequence <> L "BSSL", 08 <>.

3) Wien the drive stops, disassenble nenory at $7000 (D 7000)
Cursor down through menory, and inspect the long | oader file
that loads in the entire programand the junps to the start
address. At the address $20C7 you'll find a JNP 0803. Using the
MEMORY command (M 70C7) type a 00 over the 4C and hit RETURN
This will allow the | ocader to operate, and, when done, will
BREAK just before the junp to $0803. W can then follow the
program fl ow, beginning at $0803. Start the |oader execution by
doing a GO 7000 (G 7000). The drive will start up and the files
will appear on the screen as they are being | oaded. When the
drive finally stops, reset the conputer and re-sys the nonitor
back in (SYS 49152).

4) Now | et's disassenble nenory at $0803 (D 0803). The first
instruction we find is a JSR 09E1l, so disassenble $09E1 (D

09E1l). This disassenbly reveals the decryption schene that is

hi ding the protection check. You'll find it resides at $09El -
$09F2. Study it closely, for it is the heart of this protection
schenme.

5) Be sure your original disk is in the drive and start the
code up by doing a GO 09E1 (G 09El). The drive will start up and in
a few seconds will stall again. Again, reset the conputer and re-
SYS the monitor in with SYS 49152. Disassenble nenory at $09E1l

(0 09E1) and inspect the code again. It has changed into valid
program code. Now all that's left is to save the changed code

back to the disk.

Wor ki ng with the backup

K.J. REVEALED TR LOGY PAGE [57] (C) 1990 K.J.P.B.

6) I nspection of the disk log tells us that the file BSSOis
the likely candidate to contain the protection code. You nmay , as
we did, load BSSO and i nspect the proper addresses to ensure our
save is to the proper file. Then, when satisfied, just redo step
five and, when the code has been replaced againl save the file
back to your BACKUP disk. The disk log tells us the file resides
for $0800-$1600. Be sure to add one byte to the end address

<> S "@ BSSO', 08, 0800, 1601 <>.

When this save is conplete, your backup will be conpletely broken
and may be copied with any fast copier. For those who want to

i nspect the protection code, just load in the BSSO file and do a GO
to O9El. After about one second, reset out and re-SYS the nonitor
in and inspect that nmenory area. You'll find the protection code
intact. If you allow the drive to run for long, the protection code
will be replaced by valid program code.

EXPRESS RAI DER : DATAKAST
Pr ocedur e:

Loadi ng the original disk produces a rattle free load, and an
error scan shows no standard errors. A backup nade with the C 64
Fast Copi er produces a non working copy, A backup nade with a
nybbl er produces the sane non working backup. Before starting to
work on this title, nmake a fast-copier backup and a formatted work
di sk. Because the only file on the directory of this title is the
| oader, special procedures will be required. You will need a reset
button of sone sort.

wor ki ng with your backup

1) Wth the reset switch in place, |oad the backup three or
four tinmes to get the feel of when the programstalls. Wen you
have gotten the tining down, try to reset the conputer just before
that stall occurs. You will hear the head swing out if you are

too late. W want to reset just before it does. After reset,
fromthe Utility disk, |load the $CO00 nonitor

< LOAD "49152",8,1 > and after the load sys it in <SYS 49152>.

2) I f you have performed previous breaks in Section E, you
will remenber that we are | ooking for a decrypter that hides the
protection check. That decrypter ALWAYS begins with AO 00 A9. So
we can search nost of menmory, flip out the BASIC Interpreter by
changi ng nmenory | ocation $0001 froma $37 to a $36 ($76 on the
C-128) < M 0001 > . Now do a hunt for the key bytes in nmenory

< H 0800 BFFF AO 00 A9 > . If you have reset out at the proper
time, the follow ng addresses will be returned: 84C0 8759 9629

K.J. REVEALED TR LOGY PAGE [58] (C) 1990 K.J.P.B.

9AAC . Start by disassenbling $84C0 < D 84C0> and i nspecting the
code below that address. If the code is clean, it is not what we
are looking for. Inspect all the returned addresses and | ook for
programing that has code beneath it that does not disassenble
properly (usually you'll find a ot of ?????) . You'll find that
$9626 fits the bill exactly. Here you'll find the decrypter with
about a sector of encrypted code beneath it

3) Because of the no directory files problem this break
poses a slight inconvenience. W will have to search the disk for
the proper place to lay down the break code. This type of |oader
uses a Track & Sector method of |oading. You'll find that each
page in menory occupies its own sector on the disk. Because the
break code is between $9600 and $9800, we need to record the
first 5 or 6 bytes from $9600 and $9700 to nake it easier to

| ocate these on the disk. (Remenber these will be the first
bytes in the sectors they occupy.) Using the Menory conmand,

i nspect and record the first few bytes in each: $9600 96 4C EO
97 4C FB 97/ %$9700= 40 ED 84 99 A 99 74. Again di sassenble
menory at the decrypter and use the cursor key to scroll down

t hrough nenory < D 9626 > . You nust scroll down at least a ful
sector ($9726) and a bit nore, until you see clean code again.
At $9736 you'll find a JUMP to $9744 (4C 44 97). Record this
information for later reference.

Wor ki ng with your original

4) Power of f and on again to clear nenory. Load the origina
disk until the gane has started up and again hit the reset button
Fromthe Uility Disk, again load and activate the $C000 nonitor
as before. Start disassenbly at $9626 < D 9626 > . You'll find
new code has replaced the previous encrypted code. The key to
breaking this type of protection is to replace the encrypted

code with this new code. Disassenble again at $9626 and cursor
down t hrough nmenory. At $9736, you'll find the same three bytes
as we recorded earlier: 4C 44 97. This tells us that the code
fromhere on is the sane as it was in the unrun and encrypted
state. Place your formatted work disk in the drive and save the
new code < S "BLOCK", 08, 9626, 9738 >

Wor ki ng with your backup

5) Qur task nowis to transfer the code in the BLOCK file to
t he backup disk in the proper location. Here's the procedure. Power
of f and on again. Load the Disk Dr fromthe UWility D sk and RUN

it < LOAD "Dl SK DOCTOR", 8,1 > . Using the - comuand from Di sk

Dr., search from Track 18/ Sector 0 backwards one sector at a

time. You'll be looking for the Sector that contains 96 4C EO 97
A4C FB 97 as it's first seven bytes ($9600 in Menory) and 40 ED

84 99 A 99 74 as it's first seven bytes ($9700 in Menory). This

K.J. REVEALED TR LOGY PAGE [59] (C) 1990 K.J.P.B.

search is time consum ng but necessary. You will find that
$9600- $96FF wi || be at Track 11) Sector 8 and $9700- $97FF at
Track 11/ Sector 16. Thus the code nust be placed at Track
11/ Sector 8 Position $26 (38 in decimal) and continues on to
Track 11/ Sector 16 position $00 to end.

6) Usi ng Hesnon, convert our BLOCK start and end addresses to
deci nmal . $9626 = 38438 and $9736 = 38710. Power down and renove
Hesmon. Now |l et's begin creating the paraneter that will [ay

down the saved code in the proper |location on the backup for us.
Fol | ow t hese instructions precisely.

Al Fromthe work disk load the BLOCK file <LOAD "BLOCK", 8, 1>
B] Type NEWand hit RETURN

C] Fromthe Wility Disk |oad the PARM TEMPLATE
< LOAD " PARM TEMPLATE", 8 >

Dl List out the tenplate and inspect. Start the data maker by
typi ng GOTOC600

E] H't RETURN to continue. Enter Start as 38438 and END as
38710.

Fl Record the nunber of bytes for use later (273 bytes) and
hit RETURN.

C] The datanmaker will now PEEK nmenory where our BLOCK is
stored and convert the bytes to data statenents in decinal.

H Wen the programends, LIST again. Edit line 5 for the
desired title.

Il List out line 100 and Edit :TR=Il|: SE=8: FB=38: NB=218
Tr=TRack(Il1), SE=SEct or (8), FB=Fi rst Byte Position (38),
NB=NUrber of bytes (218) <256-38=218>. Ht RETURN to | ock
in.

J] Type a 101 over the 100 in line 100 and Edit
Tr=l1 : SE=16 : FB=00 NB=55
Tr=TRack(11) , SE=SEctor(16) ,FB=First Byte Position (00),
NB=Nunber of bytes (55) <273-218=55>.Hit RETURN to | ock in.

K] Save the new parmto the work disk < SAVE "TEST",8 > .

7) Now run the paraneter on the backup. Load the backup, and
test it. You'll find that it doesn't work. Sone titles require a
little nore work. Again with the reset switch in, |load the
original again, resetting just before the head swi ng. Again |oad
the $COOO nonitor and sys it in < SYS 49152 > . W need to find

K.J. REVEALED TR LOGY PAGE [60] (C) 1990 K.J.P.B.

the routine that either does a JSR or a JNP to the protection
routine at $9626. Agai n change the $0001 address to $36 and use
the HUNT command to search for a JSR 9626 or a JMP 9626 < H 0800
BFFF 20 26 96 >, and < H 0800 BFFF 4C 26 96 >. You should get a
76A1 returned. Disassenbly of $76A1 shows a JSR 9626.
Qccasionally you will have to change the JSR (20) to a JMP (40
or conpletely erase it with NOPs RA RA RA. As before, record
the bytes at $7600 so we may find the sector containing this
code on the disk. $7600 = 2F SD 11 DO BE 20 DO BE. Agai n power
down and on again and load the Disk Dr fromthe Wility disk
Search the first bytes of each sector until you |ocate the
desired pattern. W found it at Track 19/ Sector 10. The 20 26 96
bytes are located at position $Al (72 in decinal).

8) Rel oad the TEST paraneter for another change. List out |ine
|00. Type a 99 over the 100 in line 100 and Edit

Tr=19: SE=| 0: FB=72: NB- 03 (Tr =TRack(19), SE=SEct or (|1 0), FB=Fi rst
Byte Position (72), NB=NUnber of bytes (03) <EA RA EA>). Hit
RETURN to lock in. Finally add a new data statement. In a clear
spot, TYPE : < 1900 DATA234, 234,234 > and hit RETURN. Again,
save the new parmto the work disk < SAVE "TEST 2",8 > . Run the
paraneter on the backup again. This tinme you'll find it works
fine. This title although not file copyable is conpletely void
of copy protection. Note: if you are confused as to how the
paraneter should | ook after you' re done, list out the Express
Rai der parmfromthe Utility disk and list it out. It rmay becone
alittle clearer to you.

BREAKTHROUGH : DATABAST
Pr ocedur e:

Loadi ng the original disk produces a rattle free load, and an
error scan shows no standard errors. A backup nade with the C 64
Fast Copi er produces a non working copy, A backup nade with a
nybbl er produces the sane non working backup. Before starting to
work on this title, nmake a fast-copier backup and a formatted work
di sk. Because the only file on the directory of this title is the
| oader, special procedures will be required. You will need a reset
button of sone sort.

Wor ki ng with your backup

1) Wth the reset switch in place, |oad the backup three or
four tinmes to get the feel of when the programstalls. \Wen you have
gotten the tinmng down, try to reset the conputer just before

that stall occurs. You will hear the head swing out if you are

too late. W want to reset just before it does. After reset,

K.J. REVEALED TR LOGY PAGE [61] (C) 1990 K.J.P.B.

fromthe Utility disk, |load the $CO00 nonitor
< LOAD "49152",8,1 > and after the load sys it in < SYS 49152 >,

2) I f you have performed the previous breaks in Section E, you
will remenber that we are | ooking for a decrypter that hides the
protection check. That decrypter' ALVWAYS begins with AO 00 A9. So
we can search nost of menory, flip out the BASIC Interpreter by
changi ng nenory | ocation $0001 froma $37 to a $36 ($76 on the
C-128) < M 0001 > . Now do a hunt for the key bytes in nmenory

< H 0800 BFFF AO 00 A9 > . If you have reset out at the proper
time, the follow ng addresses will be returned: OF13 B4ED B9ES8
Start by disassenbling $0F13 < D OF13> and inspecting the code
bel ow that address. If the code is clean, it is not what we are
| ooking for. Inspect all the returned addresses and | ook for
programing that has code beneath it that does not disassenble
properly (usually you'll find a lot of ?) You'll find that
$OF13 fits the bill exactly. Here you'll find the decrypter with
about a sector of encrypted code beneath it.

3) Because of the no directory files problem this break poses
a slight inconvenience. W will have to search the disk for the
proper place to lay down the break code. This type of | oader
uses a Track & Sector method of loading. You'll find that each
page in menory occupies its own sector on the disk. Because the
break code is between $OFOCO and $1100, we need to record the
first 5 or 6 bytes from $OFQ0 and $1000 to nake it easier to

| ocate these on the disk. (Remenber these will be the first
bytes in the sectors they occupy. Using the Menory comand,

i nspect and record the first few bytes in each: $0OF0O0= 8D 5A OD
A9 81 85 02/ %I 000= 00 00 00 00 00 00 00. Again disassenble
menory at the decrypter and use the cursor key to scroll down

t hrough menory < D OF13 > . You nust scroll down at |east a ful
sector ($1013) and a bit nore, until you see clean code agai n.
From $1013-$1041 vyou'll find all zero bytes. Record this
information for later reference.

Wor ki ng with your original

4) Power of f and on again to clear nenory. Load the origina
di sk until the gane has started up and again hit the reset button
Fromthe Utility Disk, again |oad and activate the $CO0O nonitor
as before. Start disassenbly at $0F13 < D OF13 > . You'll find
new code has replaced the previous encrypted code. The key to
breaking this type of protection is to replace the encrypted
code with this new code. Disassenble again at $0F13 and cursor
down through nenory. At $1013-$1041, you'll find the sane zero
bytes as we recorded earlier. This tells us that the code from
here on is the same as it was in the unrun and encrypted state.
Pl ace your formatted work disk in the drive and save the new
code < S "BLOCK", 08, 0F13, 1014 >

K.J. REVEALED TR LOGY PAGE [62] (C) 1990 K.J.P.B.

Wor ki ng with your backup:

5) Qur task nowis to transfer the code in the BLOCK file to
t he backup disk in the proper location. Here's the procedure. Power
of f and on again. Load the Disk Dr fromthe UWility D sk and RUN
it < LOAD "DI SK DOCTOR',8,1 > . Using the - comuand from Di sk

Dr, search from Track 18/ Sector 0 backwards one sector at a

time. You'll be looking for the Sector that contains

8D SA OD A9 81 85 02 as it's first seven bytes ($OFQ0 i n Menory)
and 00 00 00 00 00 00 00 as it's first seven bytes ($1000 in
Menmory). This search is tine consuning but necessary. You wll
find that $OFOO- $OFFF will be at Track 17) Sector 19 and

$1000- $I OFF at Track 17/ Sector 6. Thus the code nust be pl aced

at Track 17/ Sector 19 Position $13 (19 in decimal) and continues
on to Track 17/ Sector 6 position $00 to end.

6) Usi ng Hesnon, convert our BLOCK start and end addresses to
deci mal . $0F13 3859 and $1013 4115. Power down and renpve
Hesmon. Now |l et's begin creating the paraneter that will [ay

down the saved code in the proper |location on the backup for us.
Fol | ow t hese instructions precisely.

A) Fromthe work disk load the BLOCK file < LOAD "BLOCK", 8,1 >
B) Type NEWand hit RETURN

C Fromthe Wility Disk |oad the PARM TEMPLATE
< LOAD " PARM TEMPLATE", 8 >

D) List out the tenplate and inspect. Start the data maker by
typi ng GOTOC600

E) Ht RETURN to continue. Enter Start as 3859 and END as 4115.

F) Record the nunber of bytes for use later (257 bytes) and hit
RETURN.

G The datamaker will now PEEK nmenory where our BLOCK is stored
and convert the bytes to data statenents in decinal.

H) Wen the programends, LIST again. Edit line 5 for the
desired title.

I) List out Iine 100 and Edit :TR=17: SE=19: FB=19: NB=237 /
Tr=TRack(17) , SE=SEctor(19) ,FB=First Byte Position (19),
NB=NUnber of bytes (237) <256-19=237>. Hit RETURN to lock in.

J) Type a 101 over the 100 in Iline 100 and Edit

Tr--17 :SE=6 : FB=00 :NB=20 / Tr=TRack(17),
SE--SEctor(6), FB=First

K.J. REVEALED TR LOGY PAGE [63] (C) 1990 K.J.P.B.

Byte Position (00), NB=NUnber of bytes (20) <257-237=20>.Hit
RETURN to | ock in.

K] Save the new parmto the work di sk < SAVE "TEST",8 >

7) Run the paraneter on the backup again. You'll find it works
fine. This title although not file copyable is conpletely
voi d of copy protection. Note: if you are confused as to how
the parameter should look after you' re done, 1list out
t he Breakthrough parmfromthe UWility disk and list it out.
It may beconme a little clearer to you

I NTRO : PROTECTI ON SCREME TYPE F

This protection schenme al though tough to copy, can usually be
reproduced by a few of the nodern nybblers such as The Shot gun
Because the protection is on one of the outer tracks (36-40), you
nmust copy out to track 40. This schene was devel oped in Engl and

and is seen on many of the Firebird rel eases. A few other
publ i shers have used this scheme but those al so had obvi ous English
ori gins.

Characteristics of this scheme are references to GVA in the

| oader code or in the directory. Shortly after booting a non
wor ki ng copy, you can hear the head swing out and then the drive
will lock up. Opening the drive door produces no flicker of the
working drive light. Many tines after a load failure, you will
have to initialize your drive

In short, this protection is executed at the begi nning of the

boot up process. It is generally accessed by a JSR to code that
checks special code placed on an outer track, usually track 38. A
numeric value is returned back only if the protection is in place.
If a non working copy is being booted, the drive head will sw ng
out and lock up. Sone of these schenes use the ~uneric val ue

br ought back and sone do not. W will exam ne three types. In al
cases we will show you how to fool the code into not even doing

the protection check. Also we will show you how to repair the often
times corrupted directories.

Bef ore working on these titles, please nake a Fast Copy, and
repair the directory. (See the general instructions below) A disk
| og woul d al so be hel pful

Using Di sk Doctor and the map bel ow, you should be able to

repair nost any directory. Let's begin with Track 18 sector 1. The
first two bytes represent the Iink bytes. They will either point
to the next track and sector or will indicate that this sector is
t he

K.J. REVEALED TR LOGY PAGE [64] (C) 1990 K.J.P.B.

last one in the directory. Cenerally if nore than one sector is
used in the directory, you will find an rd at position 0. This
represents a link to track 18 sector 4. A @followed by a deci mal
255 represents the last sector of the directory. |If when starting
at track 18 sector 0 you cannot use the n key and link the
directory sectors together, you will have to repair these pointer
bytes. After a little practice, this task will becone easy. Now
for the file entries. Mdst changes can be nade in the text node.
Programtype is rarely corrupted and a @at that position

i ndicates a scratched file. These are normal and shoul d remnain
scr at ched.

The track and sector pointers nmust point to valid tracks and sectors
or they are nost likely dummy files nmeant to prevent file copying.
Titles may have only upper and lower text in them Those with text
foll owed by other than a shifted space (decinmal 160) should be
filled with shifted spaces. Only occasionally will a program

demand an unstandard file nanme. Finally, the nunber of sectors are
not of mmjor inportance and will be nornalized after file copying
(when possible).

Track 18 Sector O represents the BAM and is often corrupted

al so. The nmain spots are position 2 which is the DCS flag byte. A
byte other than an A will prevent you fromwiting to that disk
Change this byte if not normal using the text node. Position 144
(decinmal) represents the disk title and I D. These are in al nost

all cases, cosnetic and should be normalized. The title should be
normal text and any unused title spaces should contain shifted
spaces (decinal 160). The | D begi nning at decinal position 162 can
if desired, be 5 characters. These nmust however be nornal text
characters.

Maps of normal sectors have been given. Use these naps and Di sk

Doctor to exanmine our UWility D sk. Wen you understand the normal
format, the abnormal will becone easy to fix.

K.J. REVEALED TR LOGY PAGE [65] (C) 1990 K.J.P.B.

Track 18/ Sector O

Title Sh/ Spaces ID Sh/ Space 2A Sh/ Spaces
Pos: 144- 159 160- 161 162- 163 164 165-166 167-170

Track 18/ Sector 1-18

Program Track Sect or Title # of
Type Sectors
2 * 3 * 4 * 5-20 * 30
34 * 35 * 36 * 37-52 * 62
66 * 67 * 68 * 69- 84 * 94
98 * 99 * 100 * 101-116 * 126
130 * 131 * 132 * 133-148 * 158
162 * 163 * 164 * 165-180 * 190
194 * 195 * 196 * 197-212 * 222
226 * 227 * 228 * 229-244 * 254

ARTI ST 64 : W GVORE
Pr ocedur e:

Loadi ng the original disk reveals the GVA synbol on the opening

| oader screen. A fast copy when booted, |ocks up the drive and
sends it into an endless spin. Before starting, nake a fast copy
using our C-64 Fast Copy. Repair the directory according to the
step one instructions and then validate the disk. Finally, a disk
| og may be hel pful

Wor ki ng with your backup

1) Load Di sk Doctor fromthe Utility Di sk, and inspect Track
18/ Sector 1. You should find this sector to be normal. Use the -
key to go to Track 18 } Sector 0. You'll find the NAVE and ID
nunber to be corrupted. One way to repair it is as foll ows:
Cursor to position 144 and type <t> for text node. In this node
type ARTIST 64 followed by shifted spaces (decimal 160) to
position 162. Now type AR/ 64 and hit RETURN. Wite these changes
to the backup by typing <r> followed by a <y>. Lastly while at
this sector hit <n> to go to the next sector in the directory.

K.J. REVEALED TR LOGY PAGE [66] (C) 1990 K.J.P.B.

You'll find that it goes to Track 18/ Sector 4. At Track

18/ Sector 4 you'll find no directory entries. The correct path
is to Track 18/ Sector 1 so go back to Track 18/ Sector O

and change the first two bytes fromrd to ra or 18 1 in decinal.
Use the @key to nmake each change and be sure to rewite your
changes to the backup. Now power down and | oad and check the
directory. The file nanes should be present. Validate the disk
and then using the disk logger, log the file addresses.

2)
<

3)

Wth Hesnon in the cartridge port, load the boot file

L"B" 08 >. At the end of the |load, Disassenble code at $02A7
<D 02A7> and using the cursor down key, scroll down through
nmenory. The code highlights are:

Al
Bl
d

Dl
El

D 02C6 : JSR FF90 (control | oad nessages)

D Q2CF : JSR FFBA (set | ogical addresses)

D 02D8 : JSR FFBD (set file name:3 characters |ocated at
$02C1: Use | conmand to see [|I 02Cl] the file nane GWL.
D 02F1 : JSR FFD5 (load into ram

D O2FD : JMP COOO (Junp to location $COO0.)

We now know that the next file loaded in is GVML and that the

code at $CO00 is the junp link. Load the GML file as
< L"GWML" 08 >. Start disassenbly of code at $COQO

A)

Bl

d

D]

Let's execute the code at $CO00 and see what happens. Type
[G COOQ . Notice the beginning screen cones up and asks for y
or n for fast |oader. Type n and listen. A short |oad takes
pl ace and the head swings out. The drive will be | ocked up.
Power down and up again, type Xto return to basic and
initialize your drive. Wen the drive stops, hit
RUNSTOP/ RESTORE to return to the nonitor.

Again load the GML file as before and start Disassenbling
code at $C0000 < D COOO >. Cursor down through the code to
$C024. Here you 'Il find a JSR C800. This is the actual
protection check routine. Notice the next instruction is a
PHA which places the numeric value returned fromthe
protection check on the stack. This value is the key to this
protection schene.

Make sure you place a wite protect on the ORIG NAL Artist 64
and place it into the drive. Using the Menmory Comrand, change
the PHA(48) at $C027 to a BRK(00). <M C027>. W can now
execute the protection code fromthe original and the val ue
inthe left in the A register when the code breaks will be
the nuneric value we're |ooking for. Execute the code by
typing < G COOO >.

The opening screen will again appear and input N again and

K.J. REVEALED TR LOGY PAGE [67] (C) 1990 K.J.P.B.

the load will continue. This tinme the head will sw ng out and
a few nonents later the programw Il break. The registers
will be on the screen. Note the A register has a val ue of 24.
This is the value we're |ooking for. (Those who want to

i nspect the drive routine that checks protection nmay find it
starting at $C800.)

E] The break is now quite sinple. W can replace the JSR C800
instruction with the value and totally skip the protection
check. By replacing it with A9 24 EA (LDA 24 NOP) we can
directly load the accunulator with a 24 which then will be
pushed onto the stack. Let's make our changes with Disk
Doct or .

F] Using the converter in Hesnon, find the decimal equivalent to
A9 24 EA. In a clear work space type <$ 00A9>. The deci nmal
value 169 will be returned. The sane procedure for 0024 and
OOEA will return 36 and 234 respectively. Power down and
renove Hesnon. Fromthe Wility disk, |load Di sk Doctor and
again insert the backup into the drive. At Track 18/ Sector 1,
position 34, you'll find the Prg byte for the GVML file. Place
the cursor on the Track pointer at position 35 and press j to
Junp to Link. You'll be taken to Track 17, Sector 1. Starting
at position O cursor along and | ook for the hex bytes 20 00
C8 (JSR C800) pattern. At position 40 you'll find the first
byte of that pattern. Use the @key to change three bytes
starting at position 40 to 169, 36, 234 (decinal equivalent).
Ht the <r> key to rewite the sector and then <y > for yes.
Your title is now free fromall protection and nmay even be
file copied if desired.

COLOSSUS CHESS : FlI REBI RD
Pr ocedur e.

Loadi ng the original disk reveals the GVA synbol on the opening
| oader screen. A fast copy when booted, |ocks up the drive and
sends it into an endless spin. Before starting, nake a fast copy
using our C-64 Fast Copy. Repair the directory according to the
step one instructions. Be sure to validate the disk and do a | og
the disk as a part of your preparation

Wor ki ng with your backup
1) Load Di sk Doctor fromthe Utility Di sk, and inspect Track

18/ Sector 1. You should find this sector to be normal. Use the -
key to go to Track 18 Sector 0. You'll find the NAME and I D

K.J. REVEALED TR LOGY PAGE [68] (C) 1990 K.J.P.B.

nunber to be corrupted. One way to repair it is as foll ows:
Cursor to position 144 and type <t> for text node. In this node
type COLOSSUS foll owed by shifted spaces (decinmal 160) to
position 162. Now type CHESS and hit RETURN. Wite these changes
to the backup by typing <r> followed by a <y>. Lastly while at
this sector hit <n> to go to the next sector in the directory.
You'll find that it goes to Track 18/ Sector 1. Continue hitting
nto go to each linked sector in the directory. You'll find
every sector to be normal with the last directory sector at
Track 18) Sector 5. Now power down and | oad and check the
directory. The file nanes should be present. Validate the disk
and then using the disk logger, log the file addresses.

2) Wth Hesnon in the cartridge port, load the boot file
< "Firebird",08 >. At the end of the |oad, D sassenble code at
$02A7 <D 02A7> and using the cursor down key, scroll down

t hrough menory. The code highlights are:

Al D 02C6 : JSR FF90 (control | oad nessages)

B D Q2CF : JSR FFBA (set | ogical addresses)

g D 02D8 : JSR FFBD (set file name:3 characters |ocated at
$02Cl1: Use Interpret command to see < | 02ClL > the file name
GM .

Dl D 02F1 : JSR FFD5 (load into ram

E] D @FD : JMP 0334 (Junp to location $0334.)

3) W now know that the next file loaded inis GM and that the

code at $0334 is the junp link. Load the GML file as

<L"GM" 08 > Notice that the code fills the screen. This is
because it is |loaded into screen nenory. Cursor down and start
di sassenbly of code at $0334.

Al Di sassenbl e code at $0334 <D 0334>. You'll find a junp to
$034B. Cursor down and inspect the code from $034B- $036B
This code represents the key to the protection
This particular code can be found in many simlar titles
and the break for all is about the same. This code sets up
a |l oad of the actual protection check code within the GVA3
file. (Those of you interested in the drive code for the
protection should | oad and i nspect GVA3.) A JSR to $C800
within this code checks protection, and if the check is
successful, a value of $97 is place at conputer |ocation
$0002. Upon return fromthe JSR C800, the value in
| ocation $0002 is loaded into the accumul ator and EORed
with a value of $97. Lastly the code Branches if Equa
(to 0) to $036C. Renenber, if protection WAS satisfied, a
val ue of $97 was placed at $0002. The EOR Truth Table in
the back of the book tells us that $97 EORed with

K.J. REVEALED TR LOGY PAGE [69] (C) 1990 K.J.P.B.

$97 is in fact zero. If the branch does take place, it wll
cause a junp around the instruction at $0369 which is a JW
($FFFC). This instruction is actually a Junp to a Kerna
routine that does a systemreset, which in turn will crash
the | oad process.

B The break is now quite sinple. W can junp around the whol e
protection check. Al that is necessary is to replace the JSR
C800 with a JUWP around the reset code to $036C. W will
replace the 20 00 C8 with 4C 6C 03 (JMP 036C). Renenber, we
don't want to allow any protection check because if the
protection is not in place, the drive hangs up and goes into
an endl ess spin. Let's nake our changes w th Di sk Doct or

q Using the converter in Hesnon, find the deci nal equival ent
to 4C 6C 03. In a clear work space type <$ 004C>. The
deci mal value 76 will be returned. The same procedure for
006C and 0003 will return 108 and 03 respectively. Power
down and renove Hesnon. Fromthe Utility disk, |oad D sk
Doctor and again insert the backup into the drive. At
Track 18/ Sector 1, position 34, you'll find the Prqg byte
for the GVML file. Place the cursor on the Track pointer at
position 35 and press <j>to Junp to Link. You'll be taken
to Track 17, Sector 1. Starting at position 0 cursor al ong
and | ook for the hex bytes 20 00 C8 (JSR C800) pattern. At
position 48 you'll find the first byte of that pattern. Use
the @key to change three bytes starting at position 48 to
76, 108, 03 (decinal equivalent). H't the <r> key to
rewite the sector and then <y> for yes. Your title is now
free fromall protection and nmay even be file copied if
desi red.

COVPUTER SCRABBLE : LEI SURE GEN US
Pr ocedur e:

Loading the directory of the original disk reveals the GVA
synbol . A fast copy when booted, |ocks up the drive and sends it
into an endl ess spin. Before starting, nake a fast copy using our
C- 64 Fast Copy. Repair the directory according to the step one
instructions. Be sure to validate the disk and do a | og the disk
as a part of your preparation.

Wor ki ng with your backup
1) Load Di sk Doctor fromthe Utility Di sk, and inspect Track

18/ Sector 1. You should find this sector to be normal. Use the -
key to go to Track 18) Sector 0. You'll find the NAVE and ID

K.J. REVEALED TR LOGY PAGE [70] (C) 1990 K.J.P.B.

nunber to be corrupted. One way to repair it is as foll ows:
Cursor to position 144 and type <t> for text Rode. In this node
type SCRABBLE foll owed by shifted spaces (decimal 160) to
position 162. Now type LaG SC and hit RETURN. Wite these changes
to the backup by typing <r> followed by a <y>. Lastly while at
this sector hit <n> to go to the next sector in the directory.
You'll find that it goes to Track 18/ Sector 1. Continue hitting
nto go to each linked sector in the directory. You'll find
every sector to be normal with the last directory sector at
Track 18) Sector 4. Now power down and | oad and check the
directory. The file nanes should be present. Validate the disk
and then using the disk logger, log the file addresses.

2) Wth Hesnmon in the cartridge port, load the boot file
< L"B" 08 >. At the end of the |load, Disassenble code at $02A7
< D 02A7 > and using the cursor down key, scroll down through
nmenory. The code highlights are:

Al D 02C6 : JSR FF90 (control | oad nessages)
B D Q2CF : JSR FFBA (set | ogical addresses)

g D 02D8 : JSR FFBD (set file name:3 characters |ocated at
$02C1: Use Interpret conmand to see< | 02Cl >the file
name GM .

Dl D 02F1 : JSR FFD5 (load into ram
E] D O2FD : JMP 3800 (Junp to location $3800.)

3) W now know that the next file loaded in is GM and that the
code at $3800 is the junp~link. Load the GM file as
< L"GM" 08 > Start disassenbly of code at $3800.

Al Let's execute the code at $3800 and see what happens. Type
< G 3800 >. Notice the beginning screen cones up and asks for y
or n for fast |oader. Type n and listen. A short |oad takes
pl ace and the head swings out. The drive will be | ocked up
Power down and up again, type Xto return to basic and
initialize your drive. Wen the drive stops, hit
RUNSTOP/ RESTORE to return to the nonitor.

B] Again load the GM file as before and start Di sassenbling
code at $3800 <D 3800>. Cursor down through the code to
$384A. Here you'll find a JSR C800. This is the actua
protection check routine. Notice the next instruction is a
PHA which places the numeric value returned from the
protection check on the stack. This value is the key to this
protection schene.

C] Make sure you place a wite protect on the ORIG NAL Artist 64

K.J. REVEALED TRILOGY PAGE [71] (01990 K.J.P.B.

and place it into the drive. Using the Menmory Comrand, change
the PHA(48) at $384D to a BRK(00). < M 384D >. W can now
execute the protection code fromthe original and the val ue
inthe left in the A register when the code breaks will be
the nuneric value we're |ooking for. Execute the code by
typi ng <G 3800>.

Dl The opening screen will again appear and input N again and
the load will continue. This tinme the head will sw ng out and
a few nonents later the programw Il break. The registers
will be on the screen. Note the A register has a val ue of 58.
This is the value we're |ooking for. (Those who want to
i nspect the drive routine that checks protection nmay find it
starting at $C800.)

E] The break is now quite sinple. W can replace the JSR C800
instruction with the value and totally skip the protection
check. By replacing it with A9 58 EA (LDA 58 NOP) we can
directly load the accunulator with a 58 which then will be
pushed onto the stack. Let's make our changes with Disk
Doct or .

Fl Using the converter in Hesnon, find the decinmal equivalent to
A9 58 EA. In a clear work space type <$ 00A9>. The deci nmal
value 169 will be returned. The sane procedure for 0058 and
OOEA will return 88 and 234 respectively. Power down and
renove Hesnon. Fromthe Wility Di sk, |load Di sk Doctor and
again insert the backup into the drive. At Track 18/ Sector 1,
position 34, you'll find the Prg byte for the GM file. Place
the cursor on the Track pointer at position 35 and press <j>
to Junp to Link. You'll be taken to Track 17, Sector 1.
Starting at position 0 cursor along and | ook for the hex
bytes 20 00 C8 (JSR C800) pattern. At position 78 you'll find
the first byte of that pattern. Use the ~ key to change three
bytes starting at position 78 to 169, 88, 234 (decinal
equivalent). Ht the <r> key to rewite the sector and then
<y> for yes. Your title is now free fromall protection and
may even be file copied if desired.

FAULKLANDS 82 : FI REBI RD

Procedure:

Loadi ng the original disk reveals the GVA synbol on the opening
| oader screen. A fast copy when booted, |ocks up the drive and
sends it into an endless spin. Before starting, nake a fast copy
using our C-64 Fast Copy. Repair the directory according to the

step one instructions. Be sure to validate the disk and do a | og

K.J. REVEALED TRILOGY PAGE [72] (01990 K.J.P.B.

the disk as a part of your preparation

wor ki ng with your backup

1

2)

3)

Al

Load Di sk Doctor fromthe Utility Di sk, and inspect Track

18/ Sector 1. You should find this sector to be normal. Use the -
key to go to Track 18) Sector 0. You'll find the NAVE and ID
nunber to be corrupted. One way to repair it is as foll ows:
Cursor to position 144 and type <t> for text node. In this node
type FALKLANDS fol |l owed by shifted spaces (decimal 160) to
position 162. Now type FL/82 and hit RETURN. Wite these changes
to the backup by typing <r> followed by a <y> Now take a | ook
at position 2. Anything other than a capital A in that spot wll
prevent you fromwiting to the disk. You must cursor up to
position 2 and hit <t> for text node then type A to that
position. Hit <r> for rewite and <y> for yes. Lastly while at
this sector hit <n> to go to the next sector in the directory.
You'll find that it goes to Track 18/ Sector 1. Continue hitting
nto go to each linked sector in the directory. You'll find
every sector to be normal with the last directory sector at
Track 18) Sector 4. Now power down and | oad and check the
directory. The file nanes should be present. Validate the disk
and then using the disk logger, log the file addresses.

Wth Hesnon in the cartridge port, load the boot file

< L"Firebird" 08 > At the end of the |oad, D sassenble code at
$02A7 <D 02A7> and using the cursor down key, scroll down

t hrough menory. The code highlights are:

Al D 02C6 : JSR FF90 (control | oad nessages)
B] D Q2CF : JSR FFBA (set |ogical addresses)
Cl] D 02D8 : JSR FFBD (set file name:3 characters |ocated at
$02C1l: Use Interpret command to see< | 02Cl1 >the file
name GM .
Dl DO2F1 : JSR FFD5 (load into ram
E] D ®2FD : JMP COQO (Junp to |ocation $COQQ.)
W now know that the next file loaded inis GM and that the
code at $CO00 is the junp link. Load the GM file as

< L"GM" 08 >. Cursor down and start disassenbly of code at
$CO00.

Di sassenbl e code at $0C000 < D COOO >. You'll find a Junp to
$COOF. Cursor down and inspect the code from $COOF- $C029

This code represents the key to the protection. This
particul ar code can be found in many sinilar titles and the

K.J. REVEALED TRILOGY PAGE [73] (C) 1990 K.J.P.B.

break for all is about the same. This code sets up a | oad of
the actual protection check code within the GVA3 file. (Those
of you interested in the drive code for the protection should
| oad and inspect GVA3.) A JSR to $CB800 within this code
checks protection, and if the check is successful, a val ue of
$97 is place at conputer |ocation $0002. Upon return fromthe
JSR C800, the value in location $0002 is |oaded into the
accunul ator and EORed with a value of $97. Lastly the code
Branches if Equal (to 0) to $CO2A. Renenber, if protecti on WAS
satisfied, a value of $97 was placed at $0002. The ECR Truth
Table in the back of the book tells us that $97 ECRed with
$97 is in fact zero. If the branch does take place, it wll
cause a junp around the instruction at $C027 which is a JWP
($FFFC). This instruction is actually a Junp to a Kerna
routine that does a systemreset, which in turn will crash
the | oad process.

B] The break is now quite sinple. W can junp around the whol e
protection check. Al that is necessary is to replace the JSR
C800 with a JUWP around the reset code to $CORA. W will
replace the 20 00 C8 with 4C 2A Co (JMP CQ2A). Renenber, we
don't want to allow any protection check because if the
protection is not in place, the drive hangs up and goes into
an endl ess spin. Let's nake our changes w th Di sk Doct or

C] Using the converter in Hesnmon, find the decinmal equivalent to
4C 2A CO In a clear work space type <$ 004C>. The deci nal
value 76 will be returned. The sanme procedure for 002A and
OOCO will return 42 and 192 respectively. Power down and
renove Hesnon. Fromthe Wility Di sk, |load Di sk Doctor and
again insert the backup into the drive. At Track 18/ Sector 1,
position 34, you'll find the Prg byte for the GM file. Place
the cursor on the Track pointer at position 35 and press j to
Junp to Link. You'll be taken to Track 17, Sector 1. Starting
at position O cursor along and | ook for the hex bytes 20 00
C8 (JSR C800) pattern. At position 34 you'll find the first
byte of that pattern. Use the @key to change three bytes
starting at position 34 to 76, 42, 192 (decinmal equivalent).
Ht the r key to rewite the sector and then y for yes. Your
title is nowfree fromall protection and may even be file
copied if desired.

I NTRO : PROTECTI ON SCHEME TYPE G

Most conputer software houses utilize sone formof "copy
protection" that prevents the average consumer from naki ng backup
copi es of the progran(s) that the conpany distributes. Even the

K.J. REVEALED TRILOGY PAGE [74] (C) 1990 K.J.P.B.

nost basi ¢ Commodore user is aware that protection is included on
nost of the commercial prograns he buys. Using a sinple
data-copier to archive the original usually fails to make a working

copy.

One conpany on the other hand, uses a different approach for

their latest series of sports ganes. Instead of encoding the
protection upon the diskette where the gane is stored, included
with the sale of each of their prograns is a device called a
Ndongl eel The dongle is sinply a snmall plastic device that plugs
into the cassette port of your Comobdore 64/128~. The dongl e
includes a snmall resistor that nakes it |look conplicated, but it is
actually a very sinple device. The resistor nmerely ties a positive
6 volt lead to an input port that the Commbdore uses for cassette
| oad/ save interfacing. The fact is, the resistor on the dongle
could be replaced with a sinple piece of wire. The resistor serves
merely either to avoid "shorting" out your Commodore (which is
doubtful), or, as nost of us tend to see it, as a deceiving

devi ce.

Through software, the programer checks a certain nenory |ocation
to see if that particular bit has a 0 value (dongle in place), or
a 1 value (dongle not plugged in.) If the bit value retrieved is a
"1", the programrefuses to operate.

The following tutorials will deal with deprotecting the software
checks in the program code. Looking through machi ne-1anguage code
for a protection-check is quite a time-consum ng task since there
are probably a nmillion ways to check if a bit value at a certain
menory |l ocation is either on or of f. In the follow ng pages, we
will try to give you sone of the nore popul ar net hods.

The bit that the dongle triggers is located at nenory | ocation
$0001. Using a machi ne-1anguage nonitor, we can verify that bit 4
is always on without the dongle plugged in.
$0001:
Bit 76543210
XXX XX XX
Bit 4 will becone "0" when the dongle is plugged in. A short
machi ne-code program assenbled in the cassette buffer ($0334) can
check the 4th bit:
A 0334 LDA #310
0336 BIT $01
0338 BEQ $033A

0339 BRK
033A BRK

Type G 0334 with the dongle in or out.

K.J. REVEALED TRILOGY PAGE [75] (01990 K.J.P.B.

The BIT instruction "AND s" nenory location $01 with the val ue

in the accunul ator (#$10 = check bit 4). If the dongle is plugged
in, both bits will match up (both I's), and the branch instruction
will be bypassed and the programwi |l break into the nonitor at
$0339.

Runni ng the programagain with the dongle plugged in will AND a

1 bit with the dongle 0 bit, causing the branch to be executed.
The programwi |l break into the nonitor at $033A. This is just one
met hod in which ACCESS checks their protection. W can "break"
their protection checks by replacing LDA #$1 0 with LDA #3$00. This
way, the BIT instruction will always result in setting the zero
flag, which enul ates the dongl e!

Here are sonme other code forns for checking the dongle:

LDA #3$1 0
BIT $00 (nenory location zero, bit 4 holds an i mage of $0001)
BEQ dongle in

Sol uti on: repl ace LDA #$10 with LDA #3$00.

LDA $01
AND #$1 0
BEQ dongle in

Sol uti on: repl ace AND #$1 0 with AND #3$00.

LDA #$40

LSR

LSR

TAX

AND $FFFI , X
BEQ dongle in

Sol ut i on: repl ace LDA #$40 with LDA #3$00.

LDA $0001

ASL

TAX

ASL

ASL

ASL

BCS dongl e out

Sol uti on: replace BCS with two "NOP"'s.
There are nmany other ways to check nenory | ocation $0001 for the

K.J. REVEALED TRILOGY PAGE [76] (C) 1990 K.J.P.B.

dongle bit. In the follow ng pages you will find instructions on
how to di sable the checks in four prograns. These should give you
the insight necessary to continue on your own.

LEADERBCOARD : ACCESS

Use the C-64 Fast Copier utility to nake an exact data-copy of
the original. This backup will run like the original ONLY if the
dongle is in place. The follow ng procedure will elininate al
dongl e- checks:

Wor ki ng with your backup

1) Turn on your conputer and fromthe Utility Disk, |oad the D sk
Logger by typing < LOAD "DI SK LOGCGER',8 > . Then type RUN
I nsert your backup copy of Leaderboard in the drive and log it.
The two files on the disk that contain code that check for the
dongle are called "L" and "H'. Take note of the addresses in
menory where these prograns reside

"L" $081D - $3E32
"H' $9280 - $AB9A

This information is inmportant since we need to load a
machi ne-|1 anguage nonitor into nenory where these prograns
aren't! We can choose fromone of three nonitors ($2000 = 8192,
$8000 = 32768, or $COOO = 49152). The nonitor at $CO0O does not
conflict with Leaderboard nmenory, so let's use it.

2) Turn on the conputer again and | oad the $COOO nonitor from your
utility disk < LOAD "49152",8,1 > followed by < SYS 49152 > to
execute it.

3) To start with a clean slate, let's clear out all menory bel ow
the nmonitor by typing < F 0800 BFFF EA >

4) Fromthe nmonitor, we nust |load the two Leaderboard files. Insert
your backup copy in the drive and |load both files: <L "H',08 >
and < L "L",08 >

5) Since the "H' file resides in the RAM underneath the BASI C ROV
($A000 $BFFF), we have to use the bank select bits to bank out
the ROM and bank in the RAM so we can view the "H' file code.
Usi ng the nenory conmand, change | ocation $0001 to 36 (76 on the
128) < M 0001 >.

6) Now we will began searching for the certain "dongl e-check"” byte

K.J. REVEALED TRILOGY PAGE [77] (01990 K.J.P.B.

sequences. W can use the nonitor "H' comrand to hunt through
menory for these patterns. Type < H 0800 BFFF A9 10 24 A >
After a brief wait, the nmonitor should return addresses: 0AA2
112F AC3C.

7) Disassenbl e each of these addresses using the < D > comuand. Use
the cursor-down key to scroll through the next couple of
addresses. At the top after each assenbly, change the LDA #$l 0
command to: LDA #$00 (see intro). i.e. - < D 0AA2 >, < A 0AA2
LDA #$00 >... do the same for the other two addresses. The rest
of the byte changes are perforned in this manner, so they won't
be in detail.

8) Type < H 0800 BFFF A9 40 4A 4A AA > Monitor finds: 1245 9D20.

9) Disassenbl e both addresses, and change the LDA #$40 command to
LDA #3$00 (see intro).

10) Type < H 0800 BFFF AD A 00 > Mnitor finds: 9AEQ

11) Disassenbl e $9AEO and cursor down 10 or 11 tines. Find the BCS
instruction and replace it with two NOPs (see intro).
< A 9AE8 NOP > < A 9AE9 NOP >

12) Type < H 0800 BFFF 58 FF > . Monitor finds: 14D1 A6F4.

13) First, disassenble a few bytes before $14D1, say at $14C0. You
will discover a routine that |ooks sonmething like the
fol | owi ng:

LDX #$09
LDA $14D8, X
ECR #$FF
STA $FF58, X

Notice that this routine decrypts a sequence of bytes beginning
at $14D8 by ECR ing it with the value of #$FF and stores it in
hi - menory hi dden beneath the Kernal ROVs. The routine itself
breaks into the IRQ routine and checks the dongle bit every
tinme the IRQ routine pointed to by vector $0314-$0315 is
executed. To see the decrypted code, you will have to point the
routine to a location in RAMthat is easily visible, say $0801
(FF58 0801). If you do, be sure to start the break procedure
over, for you will have corrupted our work up to now

14) To "trick" the routine into thinking that the dongle is always
in, type < M14D8 > . The nonitor should return a sequence of 8
byt es.

15) Edit the 4th byte over (should be $EF) and change it to $FF

K.J. REVEALED TRILOGY PAGE [78] (C) 1990 K.J.P.B.

16) Next, disassenble nenory a few bytes before $A6F4 by typing
< D ABFO > . Use cursor/down to display the next 14 or 15
bytes. The nonitor should show you sonething |ike:

LDX #$09
CLC

ADC $FF58, X
DEX

17) This group of instructions is sinply a checksum check of the
| RQ dongl e-check routine we just finished working with. In
ot her words, they are "doubl e-checki ng" their protection code.
Find the instruction that conpares the checksumvalue in the
accurmul ator with a set value. Notice the 'BEQ inmmediately
afterwards that bypasses protection failure. Sinply change 1CWP
#$5A° with 'LDA #$00'. W have just set the zero flag
permanently, and the routine is tricked"

18) Now that we have finished renoving all the dongl e-check
routines, we need to re-save the two files to your backup disk
Type: < S"@: L", 08, 081D, 3E33 > < S"@: H', 08, 9280, AB9B >

19) You now have a dongl e-free backup of Leaderboard. It nay be
archived using any sinple data copier. Note: The paraneter
LEADERB. PARM 1 represents this particular break nethod.
LEADERB. PARM 2 is a variation of this break and can be run on
a backup and examined with the nonitor

EXECUTI VE LEADERBQOARD : ACCESS

Use the C-64 Fast Copier utility to nake an exact data-copy of
the original. This backup will run like the original ONLY if the
dongle is in place. The followi ng procedure will elininate al
dongl e- checks:

wor ki ng with your backup

1) Turn on your conputer and fromthe Utility Disk, |oad the D sk
Logger by typing < LOAD "DI SK LOGGERN, 8 > . Then type RUN.
I nsert your backup copy of Executive Leaderboard #1 in the drive
and log it. The two files on the disk that contain code that
check for the dongle are called "L" and "H'. Take note of the
addresses in nmenory where these prograns reside:

"L" $081D - $3FAF

K.J. REVEALED TRILOGY PAGE (79] (01990 K.J.P.B.

"H' $9280 - $BAEC

This information is inmportant since we need to load a
machi ne-1 anguage nonitor into nenory where these prograns
aren't! We can choose fromone of three nonitors ($2000 = 8192,
$8000 = 32768, or $CO0O = 49152). The nonitor at $COOO does not
conflict with Exec Leaderboard #1 nmenory, so we will use it.

2) Turn on the conputer again and | oad the $COOO nonitor from your
utility disk < LOAD "49152",8,1 > followed by < SYS 49152 > to
execute it.

3) To start with a clean-slate, let's clear out all menory bel ow
the nmonitor by typing < F 0800 BFFF EA >

4) Fromthe nmonitor, we nust |oad the two Exec Leaderboard #1
files. Insert your backup copy in the drive and | oad both files:
<L "H,08 >and <L "L",08 >

5) Since the "H' files resides in the RAM underneath the BASI C ROVS
($A000 BFFF), we have to use the bank select bits to bank out
the ROM and bank in the RAM so we can view the "H' file code.

Usi ng the nenory command, change nenory | ocation $0001 to 36 (76
on the 128) < M 0001 >

6) Now, we will began searching for the certain "dongl e-check" byte
sequences. W can use the nonitor "H' comrand to hunt through
menory for these patterns. Type < H 0800 BFFF A9 10 24 A >
After a brief wait, the nmonitor should return addresses: QA9C
1114 9FA2.

7) Disassenble each of these addresses using the "D' conmand. Use
the cursor-down key to scroll through the next couple of
addresses. At the top after each assenbly, change the LDA #$l 0
command to: LDA #$00 . i.e. - < D OAOC > < A QA9C LDA #300 >
do the same for the other two addresses. The rest of the
byte changes are perforned in this manner, so they won't be in
detail!

8) Type < H 0800 BFFF A9 40 4A 4A AA > . Mnitor finds: 1237 9D3E.

9) Disassenbl e both addresses, and change the LDA #$40 command to
LDA #3$00

10) Type < H 0800 BFFF A9 10 24 00 > . Monitor finds: 93EF.

11) Disassenble and change LDA #$I0 to LDA #$00.

12) Type < H 0800 BFFF AD CE C2 OA AA > . Mnitor finds: 9AFE
13) Disassenbl e $9AFE and scroll down 6 or 7 tines. Find the BCS

K.J. REVEALED TRILOGY PAGE [80] (01990 K. J. P. B.

14)

15)

16)

17)

18)

The

19)

20)

instruction and replace it with two NOPs. < A 9B06 NOP > |,
< A 9B07 NOP > .

Type < H 0800 BFFF 58 FF > . Monitor finds: 14AC A5SET7.

First, disassenble a few bytes before $14AC, say at $14A3. You
will discover a routine that |ooks sonething |ike the follow ng

LDX #$09
LDA $14B3, X
ECR #$FF
STA $FF58, X

Notice that this routine decrypts a sequence of bytes beginning
at $14B3 by ECR ing it with the value of #$FF and stores it in
hi - menory hi dden beneath the Kernal ROVs. The routine itself
breaks into the IRQ routine and checks the dongle bit every
time the IRQ routine pointed to by vector $0314-0315 is
executed. To see the decrypted code, you will have to point the
routine to a location in RAMthat is easily visible, say $0801
(FF58 = 0801). |If you do, be sure to start the break procedure
over, for you will have corrupted our work up till now.

To "trick" the routine into thinking that the dongle is always
in, type < M14B3 > . The nonitor should return a sequence of
8 bytes.

Edit the 4th byte over (should be $EF) and change it to $FF.

Next, disassenble nenory a few bytes before $AS5E7 by typing
< D ASE1 > . Use cursor-down to display the next 14 or 15
byt es.

noni tor should show you sonet hing |ike:

LDX #$09
CLC

ADC $FF58, X
DEX

This group of instructions is sinply a checksum check of the

| RQ dongl e-check routine we just finished working with. In
other words, they are "doubl e-checking" their protection code.
Find the instruction that conpares the checksumvalue in the
accumul ator with a set value. Notice the BEQ i nmediately
afterwards that bypasses protection failure. Sinply change
CWP #$5A with LDA #$00 . W have just set the zero flag
permanently, and the routine is tricked.

Now t hat we have finished renoving all the dongl e-check
routines, we need to re-save the two files to your backup disk

K.J. REVEALED TRILOGY PAGE [81] (01990 K. J. P. B.

21)

22)

Type: < S"@:L", 08,081D, 3FB0 > < S"@: H', 08, 9280, BAED >

The exact same procedure described above nust be repeated for
two files "L5" and "H5", which are identical other than nane to
"L" and "H'. So repeat steps 3-20 but use "L5" and "H5" as
filenanes instead!

After this is done, you will have a dongl e-free backup of
Executive Leaderboard #1. |t may be archived using any sinple
data copier. Note: The paranmeter for LB Exec #1 on the utility
di sk represents a variation of this break and can be run on a
backup and examined with the monitor. You'll find all changes
in about the sane nenory | ocations.

LEADERBOARD TOURNAMENT DI SK : ACCESS

Pr ocedur e:

Wor

1

2)

3)

4)

5)

Use the C-64 Fast Copier to make an exact data-copy of the
original. This backup will run like the original ONLY if the
dongle is in place. The follow ng procedure will elimnate all
dongl e- checks:

king wi th your backup

Turn on your conputer and fromthe Uility D sk, |load the Di sk
Logger utility by typing < LOAD "Dl SK LOGGER"',8 > . Then type
< RUN >, Insert your backup copy of Leaderboard Tournament in
the drive and log it. The file on the disk that contains the
code that checks for the dongle is called "B'. Take note of
the addresses in nmenory where this programresides:

"B" $9280 - $BF53 . This information is inportant since we
need to | oad a nmachi ne-l anguage nonitor into nmenory where this
programisn't! W can choose fromone of three nonitors
($2000 = 8192, $8000 = 32768, or $C000 = 49152). The nonitor
at $C000 does not conflict with Leaderboard nmenory, so we wll
use it.

Turn on the conputer again and | oad the $C000 nonitor from your
utility disk < LOAD "49152",8,1 > followed by < SYS 49152 > to
execute it.

To start with a clean-slate, let's clear out all nenory bel ow
the nmonitor by typing < F 0800 BFFF EA >

Fromthe nonitor, we nust |oad the Leaderboard file. Insert
your backup copy in the drive and load the file: < L"B", 08>.

Since the "B" file resides in the RAM underneath the BASI C ROVS
($A000- BFFF), we have to use the bank select bits to bank out

K.J. REVEALED TRILOGY PAGE [82] (01990 K. J. P. B.

6)

7)

8)
9)
10)
11)
12)

13)

14)

15)

16)

the ROM and bank in the RAM so we can view the "B" file code.
Usi ng the nenory conmand, change nenory | ocation $0001 to 36
(76 on the 128) < M 0001 >

Now, we will began searching for the certain "dongl e-check"
byte sequences. W can use the nonitor "H' conmand to hunt
t hrough nenory for these patterns. Type

< H 9000 BFFF A9 10 24 01 >. After a brief wait, the nonitor
shoul d return address: A03C

Di sassenbl e this address using the "D' comand. Use the
cursor-down key to scroll through the next couple of addresses.
At the top, change the LDA #$10 conmand to: LDA #$00 . i.e. -
< D AO3C >, < A A03C LDA #3$00 >. The rest of the byte changes
are perforned in this manner, so they won't be in detail!

Type < H 9000 BFFF A9 40 4A 4A AA > . DMonitor finds: 9D20.
Di sassenbl e and change the LDA #$40 conmand to LDA #$00
Type < H 9000 BFFF A9 10 24 00 > . DMonitor finds: 93EF.

Di sassenbl e and change LDA #$10 to LDA #$00

Type < H 9000 BFFF AD 01 00 OA AA > . DMonitor finds: 9AEO.

Di sassenbl e $9AE0 and scroll down 6 or 7 tines. Find the BCS
instruction and replace it with two NOPs. < A 9AE8 NOP >,
< A 9AE9 NOP > .

Type < H 9000 BFFF 58 FF > . Mnitor finds: AG6F4.

Di sassenble menory a few bytes before $A6F4 by typing
< D ABEO >. Use cursor-down to display the next 14 or 15 bytes.
The monitor should show you sonet hing |ike:

LDX #$09
CLC

ADC $FF58, X
DEX

This group of instructions is sinply a checksum check of the

| RQ dongl e-check routine we worked with in the Leaderboard
portion of this manual. |In other words, they are

"doubl e-checking" their protection code. Find the instruction
t hat conpares the checksum value in the accumulator with a set
value. Notice the BEQ i medi ately afterwards that bypasses
protection failure. Sinply change CVP #$5A with LDA #$00 . W
have just set the zero flag pernanently, and the routine is
tricked.

K.J. REVEALED TRILOGY PAGE [83] (01990 K. J. P. B.

17) Now that we have finished renoving all the dongl e-check
routines, we need to re-save the file to your backup disk
Type: < S"@: B", 08, 9280, BF54 > .

18) Now that you have renoved all the dongl e-check routines, you
have a dongl e-1ess working copy of Leaderboard Tournanent Di sk
#1. It nmay be backed-up with any data copier. Note: the
paraneter for LB Tourn #1 on the Utility Di sk represents a
variation of this break and can be run on a backup and exani ned
with the nonitor. You'll find all changes in about the sane
menory | ocati ons.

TENTH FRAME : ACCESS
Pr ocedur e:

Use the C-64 Fast Copier to make an exact data-copy of the
original. This backup will run like the original ONLY if the
dongle is in place. The follow ng procedure will elimnate all
dongl e- checks.

Wor ki ng with your backup

1) Turn on your conputer and fromthe Utility Disk, |oad the D sk
Logger by typing < LOAD "DI SK LOGGER',8 > . Then type < RUN >
I nsert your backup copy of Tenth Frame in the drive and log it.
The two files on the disk that contain code that check for the
dongle are called "L" and "S". Take note of the addresses in
menory where these prograns reside

"L" $081D - $3FFE
"S" $6E00 - $9FFE

This information is inportant since we need to |load a
machi ne- | anguage nmonitor into nmenory where these prograns
aren't! W can choose fromone of three nmonitors ($2000 = 8192,
$8000 = 32768, or $C000 = 49152). The nonitor at $C000 does not
conflict with Tenth Frame nmenory, so we will use it.

2) Turn on the conputer again and | oad the $8000 nonitor from your
utility disk < LOAD "49152",8,1 > followed by < SYS49152 > to
execute it.

3) To start with a clean slate, let's clear out all menory bel ow
the nmonitor by typing < F 0800 BFFF EA >

4) Fromthe monitor, we nust |load the two Tenth Franme files. Insert
your backup copy in the drive and |load both files: < L"H',08 >

K.J. REVEALED TRILOGY PAGE [84] (01990 K. J. P. B.

5)

6)

7)

8)

9)
10)

11)

12)
13)
14)
15)
16)
17)

18)

19)

20)

and < L"S",08 >

Now, we will began searching for the certain "dongl e-check"
byt e sequences. W can use the nonitor "H' command to hunt

t hrough nenory for these patterns. Type

< H 0800 9FFF A9 10 24 01 >. After a brief wait, the nonitor
shoul d return addresses: 0F66 17DO.

Di sassenbl e each of these addresses using the < D > comand.
Use the <cursor-down> key to scroll through the next couple of
addresses. At the top after each assenbly, change the LDA #$10
command to: LDA #$00 . i.e. - < D OF66 >, < A OF66 LDA #3$00 >..
do the same for the other address. The rest of the byte changes
are perforned in this manner, so they won't be in detail!

Type < H 0800 9FFF A9 40 4A 4A AA >. Monitor finds: OFF9 16E6

Di sassenbl e both addresses, and change the LDA #$40 command to
LDA #$00

Type < H 0800 9FFF A9 10 25 01 >. Mnitor finds 162B 1E3D.
Di sassenbl e both addresses and change LDA #$10 to LDA #3$00 .

Type < H 0800 9FFF A5 01 29 10 >. Monitor finds OEEC 11CA 1C5A
2C85 3141.

Di sassenbl e each address and change AND #$10 to AND #$00 .
Type < H 0800 9FFF A9 10 24 00 >. Mnitor finds 1227.

Di sassenbl e and change LDA #$10 to LDA #$00 .

Type < H 0800 9FFF A9 08 OA EA 31 2B >. Monitor finds 2BB6.
Di sassenbl e and change AND ($2B),Y to AND #$00 .

Type < H 0800 9FFF A9 DO 49 FF D1 2B >. Monitor finds 2C37.
Di sassenbl e the next 9 or 10 bytes. Find the BEQ instruction
and replace the next instruction imediately after it with an
RTS :< A 2C3F RTS > . The BEQ instruction is executed if the
dongle is in, and it hits an RTS too, so putting another RTS
after the BEQ guarantees that the programwill not crash with
t he dongl e out.

Type < H 0800 9FFF 18 A9 00 7D 00 CO > . Mbonitor finds 6EC2.
Di sassenbl e $6EC2 and scroll down 15 or 16 instructions. Find
the BEQ i nstruction and replace the next instruction after it

with an RTS again: < A G6ED9 RTS > . (W just fixed a

K.J. REVEALED TRILOGY PAGE [85] (01990 K. J. P. B.

dongl e-rel at ed checksumm ng problem)

21) Now that all the dongl e-check routines in these files have been
removed, we need to re-save the two files to our backup
< S"@:L", 08,081D, 3FFF > < S"@: S", 08, 6E00, 9FFF >

22) There are two ot her dongle-routines that need to be changed on
the Tenth Frane disk. The only problemis that they reside in
a file called "P', which | oads underneath the KERNAL ROM There
is no way to use our nonitors to view, change and re-save this
file. Instead, load the Disk Doctor utility by typing
< LOAD "DISK D*",8 > and then < RUN >,

23) Insert your backup copy of Tenth Franme and press <RETURN>. Use
the < B > command to read Track 20, Sector 1. Use the cursor
keys to nove to position 63. Using the < @> comand, change
the byte value (48) to 32. Re-wite the sector with the <r >
command. Then use < + > key to read Track 20, Sector 2. Mve
cursor to position 150. Change byte value (15) to 7. Re-wite
the sector with the < r > conmmand.

24) Let's investigate why we nmade the changes in the "P" file. From
the $C000 (49152) nonitor, load the "P" file from your backup
copy by typing <> L"P", 08.

25) Since the "P" file resides in nmenmory from $E000- $FEBF, it is
now residing in the RAMthat is "hidden" beneath the KERNAL
ROM s ($E000- SFFFF). Qur nonitor won't let us view the RAM so
we need to wite a short M. programto transfer $E000- $FFFF
down to |l ower nenory from $4000- $5FFF so we can | ook at the "P"
code.

Type in the followi ng routine starting at $0334:

A 0334 SHI
0335 LDA #$35
0337 STA $01
0339 LDX #$00
033B LDA $E000, X
033E STA $4000, X
0341 I NX
0342 BNE $033B
0344 | NC $0340
0347 | NC $033D
034A BNE $033B
034C LDA #$37
034E STA $01
0350 BRK

25) Type <> G 0334 to execute the routine.

K.J. REVEALED TRILOGY PAGE [86] (01990 K. J. P. B.

26) Type <> D 550E and cursor-down a few bytes. You should see a
dongl e-check routine that |ooks |ike:

550E LDA $01
AND #$30
ORA #$8C
STA $3A4E

The byte we changed using the DI SK DOCTCR on track 20, sector 1
changed the "AND #$30" instruction to "AND #3$20". Thi s
permanent |y masks out the dongle-bit to a "0" value, so the
conputer "thinks" that the dongle is actually in place.

27) Type <> D 575D and cursor-down a few bytes. You shoul d see:

575D LDA $01
LSR
STA $A01F
AND #$0F
STA $A027

The byte we changed on track 20, sector 2 changed the "AND
#$0F" instruction to "AND #$07". This al so masks out the dongle
bit fromlocation $01 to appear to be on (0 bit).

28) After all changes have been made, your Tenth Frame disk is
conpl etely broken and the dongle is no | onger necessary.

< < < RAPI DLOK PROTECTI ON REVEALED > > >

Most Commodore users are aware of the standard fornmat that the
1541/ 71 disk drives read. W can | oad and save prograns, directory
the disk, and performa variety of other commands. The program
code that knows how to execute all these functions is stored within
the ROM s of the disk drive. Most Disk-Drive Operating Systens are

called "DOS". RapidLok is a recent protection schene that has
appeared on the disks of sone recent big-nane producers (Accol ade,
Avalon Hill, Mcroprose...), and uses its own "DOS" systemto | oad

files. RapidLok disks will usually have only track 18 standard
formatted, the rest of the tracks being formatted in the RapidLok
manner. The Rapi dLok DCS resides in an encoded format on track 18,
sectors 18, 15, 12, 9, 6, and 3. Each tinme a file is | oaded through
Rapi dLok, a short nachi ne-| anguage aut o-boot file | oads the

Rapi dLok DOS fromtrack 18 and stores it in the disk-drive nmenory
from S0300-07FF. Currently, we know of 6 different versions of

Rapi dLok DOS. Each relies on the same basic track formatting, but

K.J. REVEALED TRILOGY PAGE [87] (01990 K. J. P. B.

in addition to | oading RapidLok files, they do a conplicated check
on certain sync |lengths, header lengths, and track to track
al i gnment .

RAPI DLOK FORVAT

Li ke Commodore DOS, RapidLok formats its tracks by first witing
a header bl ock, and then a $0255 byte |ong data bl ock. The nethod
t hr ough whi ch Rapi dLok converts this data into REAL bytes is nuch
too confusing to explain in this overview The following is how
Rapi dLok woul d fornmat one track

1/ The Reference Header

The first header on a RapidLok track is the track reference

header. It is actually a normal Comodore DOS header for that
track, sector 0 in GCR format. It is witten with a SYNC LENGTH of
$0029 bytes, if Rapi dLok DOS detects a reference header w thout the
correct sync length, the load will abort.

Exanpl e:
SYNC: $0029 Bytes: 52 57 35 29 6B 74 DC B5 = track 19, sector 0
2/ The LONG SYNC Rapi dLok Header

The second header on a RapidLok track is actually the header for
Rapi dLok sector 0. Al Rapi dLok headers begin with a $75, and
contain 7 inportant bytes that the Rapi dLok | oader needs to detect.
These bytes are followed by 3 or 4 GAP BYTES that are witten out
as #$00 s. (Any attenpt to read these bytes will return a different
byte val ue each tine.) The Rapi dLok header bl ock for sector 0 (1st
header bl ock) has a SYNC LENGTH of $003c bytes, though. The

Rapi dLok | oader will fail if this sync length is not found.

Exanpl e:
SYNC: $003C BYTES: 75 93 59 25 D6 ED 7A 4C 00 00 00 00 = sector O

The remai ni ng headers for sectors 1 through the maxi mum have SYNC
LENGTHS of $0005, and are not checked by the | oader

3/ The Rapi dLok Data bl ock

Each data bl ock begins with a $6B val ue and foll ows the header

for that particular sector. Each data bl ock contains approxi nately
$0255 bytes of data, which is converted into nornmal DATA and sent
fromthe drive to the conputer. Each data block has a sync-length
of $0005 bytes, and is not checked by the |oader. Sonetines a

Rapi dLok sector will be blank. The data block will then begin with

K.J. REVEALED TRILOGY PAGE [88] (01990 K. J. P. B.

a $55 byte and continue with $0254 nore #$55 bytes.
Exanpl e of Full Rapi dLok Data bl ock:

SYNC $0005 Bytes: 6B BB C9 24 BAFF 35 DF............
Exanpl e of Enpty Rapi dLok Data bl ock:

SYNC $0005 Bytes: 55 55 55 55 55 55 55 55............
4/ The RapidLok Bit Rate:

As far as BIT RATES and storage sizes go, RAPIDLOK fornmats
tracks in the followi ng manners for the follow ng zones:

Track Zone Bit-Rate # of Sectors

5/ The Rapi dLok EXTRA- SECTOR

After all the headers and data bl ocks for each sector of a track
are witten out, a special "extra-sector"” is witten on the disk as
part of the RapidLok's main protection schene. The bl ock has a SYNC
LENGTH of $0014, and begins with a #$55 byte. The first byte is
followed by a certain nunber of #$7B bytes in a row, giving the
entire block a specific LENGTH A special "decoder" naster-key
block is witten on track 36 of each RapidLok disk. At the

begi nni ng BOOT of the program RapidLok DOS noves the disk-drive
head to track 36, reads in the special key, decodes it and ends up
with a list of 35 nunmbers. Each nunber is the specific |ength of

t he EXTRA SECTOR for each equivalent track! During RapidLok file

| oads, if the DOS extra-sector |ength does no nmatch the naster-key
number for that track, the DOS dies. The MASTER-KEY on track 36 is
the nost difficult portion of Rapi dLok formats to reproduce.

Exanpl e of Extra-sector:

SYNC $0014 Bytes: 55 7B 7B 7B 7B 7B.. ... 7B (x anount of bytes)

6/ Overvi ew of RapidLok DOCS:

Each track contains sectors 0-11 (Tracks 1-17) or sectors 0-10
(Tracks 19-35). Each "sector" is conposed of a header bl ock
beginning with a $75 and is followed by a data-bl ock beginning with
a $6B (or a $55 if blank). Each RapidLok track al so contains a

ref erence header AND an extra-sector of special |length that nust

match a "master-key". Renenber, during |oads, Rapi dLok DCS is

K.J. REVEALED TRILOGY PAGE [89] (01990 K. J. P. B.

constantly checking the special sync |lengths described above. Even
the slightest mismatch fromthe normw Il halt the program | oad.
Thus, if your DI SK DRIVE speed is slightly off from 300 RPM you
may experience difficulties in |oading sone Rapi dLok formatted

pr ogr ams.

If you examine the directory sectors of track 18 on a Rapi dLok
disk with a track and sector editor, you will notice that after
each file name is a sequence of two or three bytes. Rapi dLok DOCS
actually uses these bytes nmuch in the way Commobdore DOS does the
track and sector pointer! The actual beginning track and sector
nunber and program |l ength are enbedded (encoded) in these bytes.

Little is known about the Rapi dLok nmaster-key on track 36. The
routine that Rapi dLok uses to decode it can be copied, but actually
witing out the key has not yet been done!

On recent RapidLok versions (5 and 6 to be specific), they use
TRACK to TRACK alignment. What this means is that if your were on
track 19 and you had just read sector 0, if you were to

i medi ately skip the drive-head to track 20 and read the first

i nformati on you encountered, you would be reading the data for
sector 0 of track 20! This is a very sinple explanation. Sonetines
track-to-track alignment can be done with a "skew'. i.e. track 19,
sector O matches track 20, sector 6, which in turn matches track
21, sector 12. The skew is 6.

Rapi dLok DOS uses a conbi nation of blank sectors ($55) and ful
sectors ($6B) on one track. This track nust be perfectly aligned
with the track before it. When DCS finishes reading the | ast sector
of the first track, it bunps the drive-head to the half and half
track. |If the track-to-track alignment is correct, it wll
encounter a full RapidLok sector, and will continue to load. If the
alignment is incorrect, even off by one sector!, the drive wll
encounter an enpty sector ($55) and the loader will then conmt
suicide within your drive! So even if a person could exactly
duplicate two RapidLok tracks, he would al so have to get the timning
within his fornmat routine exact enough to align the tracks
correctly.

An exanpl e Rapi dLok Protected track

SYNC LENGTH BYTES DESCRI PTI ON

$0029 52 55 35 29 4B 74 DC B5 track 1,0 reference header
$003C 75 93 59 25 D6 ED 7A 00 sector 0 header

$0005 6B BB C9 24 BA FF 35 DF sector 0 data bl ock
$0005 75 92 59 25 D6 ED 6E 00 sector 1 header

$0005 6B DE 59 24 96 7B ED F7 sector 1 data bl ock

K.J. REVEALED TRILOGY PAGE [90] (01990 K. J. P. B.

$0005 75 92 E9 25 D6 ED 65 00 sector 11 header
$0005 6B F7 D9 24 EF 4E AD DB sector 11 data bl ock
$0014 55 7B 7B 7B 7B 7B 7B 7B "extra-sector" for key

7/ Points of Interest:

Track 18 on ALL RapidLok disks is formatted in standard
Commodore DOS (i.e.- 18 sectors), but it also contains the RapidLok
"extra-sector" ($55 7b 7b 7b 7b...etc). The Rapi dLok auto-boot will
not | oad Rapi dLok DOS into drive menory UNLESS this extra sector is
found. It uses the 2nd byte (78) as a decoder for the DOS stored on
sector 18,15,12,9,6 and 3.

On all Rapi dLok disks released in the past 2 years, tracks 19

t hrough 35 have ALWAYS been formatted in RapidLok style. Tracks
1-17 usual ly vary, depending upon the program Huge programs w ||
Rapi dLok format all these tracks, others will use conbinations of
standard fornmat with RapidLok format. Often if a gane has a

hi ghscore list that is saved to disk, the RapidLok format wl|l

| eave track 1 open as standard Commodore DOS so the high-score |ist
can be witten to disk using a sinple B-Wor U2 command. Witing
out in RapidLok format is al nost inpossible! (it would take up too
nmuch di sk drive nenory!)

8/ I n Concl usi on:

As we have seen, the RapidLok format is not standard in any way to
the format that Commbdore DOS is using to readi ng. Because of this,
the only way to break the protection of titles that have the

Rapi dLok format is to break the separate files fromthe conputer
menory and tie themtogether. This, unfortunately is beyond the
scope of this nmanual .

We can however, give you a nethod of reproduci ng nost Rapi dLok
protected disks. This system (devel oped by the Kracker Jax tean) is
the nost effective Rapi dLok copier on the market. In the next
section, we will document our RapidLok copier in detail. Wth our
scanner, you will be able to distinguish the RapidLok tracks from
the standard tracks and even know t he Rapi dLok copier version

Armed with this information, you will build your own copier driver.

Enj oy!

K.J. REVEALED TRILOGY PAGE [91] (01990 K. J. P. B.

KRACKER JAX RAPI DLOK COPI ERS

Rapi dLok protection has offered software publishers a very

ef fective nmeans of copy protecting their software. Ot her copy
utility conpani es have rel eased copiers for a title or two, but
because of multiple protection schenes and the extrene difficulty
inwiting the copiers for those titles, they have been relatively
i neffective.

After many nont hs of research and testing, we have devel oped
copiers for what we believe to be ALL existing versions of

Rapi dLok. Unlike our conpetitors, we have not only devel oped

i ndi vidual copiers for every version of every title we could find,
but have even provided you with an extrenely easy way of exanining
and copyi ng ANY Rapi dLok protected disk released to date (July
1987). W are confident that if you follow our instructions
carefully, YOU will easily construct a copier to archive your
particul ar version of a RapidLok protected disk

In order to copy a RapidLok protected disk with our system we
must first identify it as such. Conpani es such as M croprose

Accol ade, Avantage, Avalon Hill, and Capeom are known users of
Rapi dLok. Ot hers do exist and using our systemw |l identify them

The heart of our systemis our RapidLok Scanner. Wth this

scanner you can not only tell if the disk in question is in fact
Rapi dLok, but also the variation of tracks and which version it is.
No nore guessing and endl ess backup attenpts. You are arnmed with
EXACT information, and that information can be plugged into a

Skel eton Copier to provide fast results.

Let's try one out. Fromthe Utility Disk, LOAD and RUN t he

Rapi dLok Scanner. \Wen the programis | oaded, insert any suspect
disk into the drive and press RETURN. If it is a Rapidl oked9(tm N
di sk, you will see the red and green indicators fill the track
line. Last, the version number will appear. The RapidLok disk is
made up of two conpletely different formats. Those tracks shown as
red donuts are tracks that nust be copied with a Rapi dLok copier
and those shown as green circles nmust be copied with our Nibbler.
The version nunber shown determ nes the correct Rapi dLok copier to
use.

After witing down all RapidLok tracks, all regular tracks and the
versi on nunmber, you are ready to create your own copier. Follow
t hese easy steps.

1) Format a work disk. File copy fromthe Utility disk to your work
disk the following files: RLVO, RLM, RLV2, RLV3, RLV4, RLVS5,
RLV6, NI BBLER, and COPlI ER TEMPLATE

K.J. REVEALED TRILOGY PAGE [92] (01990 K. J. P. B.

2) When conpleted, load the BASIC file < COPI ER TEMPLATE > (from
your work disk directory) and LIST it out.

3) Lines 10 and 20 are reserved for standard tracks. Lines 30 and
40 are for RapidLok tracks. Sinply type each track nunber,
seperated by commas, on the appropriate lines. To end the
sequence, type a 0 (zero). See the exanpl e bel ow

10 data 1,2,3,4,5,6,7,8,9, 18, 31, 32, 33
20 data 34, 35,0

30 data 10,11,12,13, 14, 15,16, 17,19, 20
40 data 21, 22, 23, 24, 24, 26, 27, 28, 29, 30,0

This is an exanpl e of coping standard tracks 1-9, 18, 31-35, and
Rapi dLoked tracks 10-17, and 19-30. Notice the zeros ending the
sequences in each copier type. Do not end a line with a comms,
or forget to place information on EACH data line. This WLL
cause the copiers to stall.

4) Line 50 contains the title information. You may type any title
you w sh instead of PARAMETER Tl TLE. Adjust the quotes to suit
the length of the title.

5) Line 60 nust contain the proper version nunber of RapidLok
copier to use. Type the correct nunber in the quotes follow ng
the RLV . Be sure to press RETURN to lock in all changes nade

6) Wen these steps are done, |list the paraneter out again and
doubl e check the changes. If all is well, you nmay save the file
to your work disk. Nane it appropriately as it is a custom
copier for your title.

To use your customcopier, sinply load and run it. The screen
will pronmpt you for disk swaps. When the procedure is done, power
down and up again and try your copy. It should run just as the
original did. If not, double check your paraneter for possible
errors.

I n Concl usi on:

W' ve found NO Rapi dLok' ed titles we couldn't back-up. W HAVE

had to try a different drive on occassion. Sonme drives just don't
like witing sone titles. 1571 drives seemto be extrenely

ef fective copiers using this system but nost 1541 drives will work
fine. Also, we have had to copy a title or two a bit differently
than normal. The tracks had to be copied in an out of order
sequence.

O her points of interest are: This systemonly works with

K.J. REVEALED TRILOGY PAGE [93] (01990 K. J. P. B.

wor ki ng ORI G NALS. Backups nmade with other copiers can't be backed
up. You may back up second generations of backups nmade with this
system but you rmust use the RLVO copier with the correct track
sequences (again, use the scanner). The original protection schene
is flakey in loading and the copies are no better (sorry).

I NTRO : PROTECTI ON SCHEME TYPE

GECS (Graphic Environnent Operating Systen), from Berkel ey

Sof twor ks, has revol utionized the way people use their CG64s. It's
i con-based, user-friendly, desktop interface has extended the life
of this machine to 1990 and lured |l eery buyers into the world of
Commodor e conputing. Wth the newWy avail able 1764 RAM expansi on
CECS will allow a C-64 to approach the capabilities of its younger
but nore powerful brother, the C 128.

But unlike other operating systenms (CPFM Ms-DCS..), GECS is
copy-protected. Wio needs a copy-protected operating systen? What
if you owmn a large selection of GECS application prograns and your
CECS original crashes? The prograns are usel ~ss while you try to
attain a replacenent and you can't borrow a' friend s copy because
of the serial nunber protection! Cdearly, it benefits only
Ber kel ey.

Meanwhil e, we've been agoni zi ng over which Berkeley releases to
cover in this edition of Kracker Jax Reveal ed. W were reasonably
sure that nost of you would own GECS vl.2 and Deskpak I, so we've

i ncluded those. PLUS a quick-n-dirty way to defeat GEOQS vl.3's
"Troj an horse" schenme, which will erase your systemfiles if the
file "GEOSBoot" fails a checksumtest. CGECS vl.3's protection night
be covered in a future edition if readers demand it, but its
complexity mght be intimdating to sone.

Be forewarned, though, that the going will be tough if you aren't
famliar with "The O ficial CGECS Programer's Reference Guide" or
Ri chard I nmers/ Gerald Neufeld' s "Inside Commodore DOS'. GECS and
it's protection schenes are heavily 1/0 bound and good wor ki ng
know edge of the 1541 drive and GEOS KERNAL routines is essentia
to understanding the follow ng articles.

Pl ease note:

Geos, Ceos vl.2, Deskpak I, Geos vl.3, Berkeley Softworks, and

The O ficial Geos Programmer's Guide are all registered tradenarks
of Berkel ey SoftworKks.

K.J. REVEALED TRILOGY PAGE [94] (01990 K. J. P. B.

HOBBLI NG GECS vl . 3's TRQJAN HORSE : BERKELEY SOFTWORKS

The now i nfanmous ' Trojan Horse', is an incredibly sneaky and

rat her sloppily-executed schenme that deletes your systemfiles
"GECS', "GECS BOOT", "KERNAL" and "DESKTOP" from an unaut hori zed
copy of CGECS vl.3 while you are rearrangi ng your directory pages.

It usually occurs within four noves. It actually doesn't delete the
files, it conpletely zeroes out their directory entries.

The mechani sm located in "DESKTOP", is rather sinple. A counter

is incremented randomly during directory noves. At certain
intervals, a checksumroutine is perfornmed on "GECS BOOT". If the
checksumis wong, the Desktop checks the first four entries of the
first directory page for GECS file-type soc (systemboot file). If
they match, it fills themwith 00's and wites the bl ock back to

di sk. The disk is no |l onger bootable unless you can re-create the
directory entries.

The GECS file-type |I.D. is located in byte # 24 (18) of each
file's directory entry. If this byte is changed to a GECS system
file-type ($04) in the above-nentioned files, the old horse never
gets rolled into Troy and you can rearrange your directory with
peace- of - m nd.

CGECS v1.2 : BERKELEY SOFTWORKS

1) A fast-copied or nybbled copy of GEOS vl.2 will not run. It wll
merely do a systemreset after the protection check. An error
scan shows no nornmal DOS errors but there is data on track 36
(visible with a good GCR Editor). Track 36 is not normally
copyabl e because it has no sync marKks.

2) Load the $COOO nonitor "49152" fromyour Wility Di sk then | oad
"GEOS" from a backup copy of CGECS vl.2. Disassenble the code at
$0123. This routine | oads "GECS BOOT" and junps to $6000. Load
in "GEOCS BOOT" and di sassenbl e the code at $6000. Exam nation of
the code reveals that the majority of it is encrypted but the
decryption routine at $606C is rather sinple. The code will
decrypt it for us by placing a BRK instruction at $6086 and
executing the code at $606C.

3) Now | ook at the code again. Sharp-eyed hackers will notice the
drive code starting at $623F. Here's sone of the other high
poi nts of the |oader:

$6167: Print "Booting GECS...".

K.J. REVEALED TRILOGY PAGE [95] (01990 K. J. P. B.

$6177: Execute Menory-Wite conmmand and out put fast-I oader

routine to drive, then send Menory-Execute command at
$61AD.

$6013:Direct 1/Oto drive through the serial port $DDOO

4)

5)

6)

After the Menory- Execute conmand i s sent, the code at
$61BB waits for a signal back fromthe drive. At $61D4, a
byte conparison is done. If it fails, the JMP instruction
at $6086 is altered to SFCEL (C-64 systemreset). It then
Junps back to the decryption routine which, this tine,
re-encrypts the code and then perforns the systemreset.
Let's disable the reset by placing a "BEQ $61EC' at $61D8.
Re-encrypt the code by again executing the routine at
$606C. Note the new encryption val ues at $61D8. These will
be witten to the proper sector on your backup copy.

Load the sector editor fromthe Uility Disk and trace the "GECS
BOOT" file on your backup copy. Address $61D8 woul d be in the
second bl ock of the file (it should be Track/ Sector 1/4)
starting at byte # $DE (222). Place our byte changes there and
rewite the sector back to the disk. Now reboot GECS. What
happens? No reset this time but the drive shuts off and the
screen fills with garbage. The real meat nust be in the drive
code.

Use the sector editor to restore T/S 1/4 back to its origina
state. Again load the $0000 nonitor and "GECS BOOT". Decrypt the
code again as nentioned above. The drive code starts at $623F
but we want to relocate to an address we can equate to the
actual drive address. This code is witten to $0300 in drive
nenory so lets nove our code to $1300 (T 632F 642B 1300). The
Menory- Execute conmand at $60CD junps to $0375 in the drive so
di sassenbl e code at $1375. Renenber to add or subtract $1000
fromthe address references (i.e. JSR $0300 - the subroutine
woul d be | ocated at $1300) when appropriate.

Study the code for a while just to get a feel for it. Renenber
fromour scan of the disk that track 36 is suspicious. 36 in
hexadeci mal is $24. See any references to $24? That's right! At
$143A, the accunulator is |loaded with the value $24 then the
subroutine at $13BB ($03BB) steps the head to track $24 (36).
Then a counter of $8000 (32,768) is set up, and a conparison for
specific byte values read fromtrack 36 begins. |f the counter
tines-out to zero or all values don't match, the code at $148A
is executed. Oherwise it branches to $1485. W want it to
branch to $1485 unconditionally. A great place would be at the
first byte conparison from $1463 - $1466: if the byte's not
equal, make it go to $1485 (A 1465 BNE $1485). Apply this change
to the equival ent drive code at $63A4.

K.J. REVEALED TRILOGY PAGE [96] (01990 K. J. P. B.

Not e your encrypted byte changes and use the sector editor to
wite themto you backup copy. It should be Track/Sector 1/20,
byte positions $AE/ AF (174/175). Al so make sure you have
corrected the first change we nade. Now reboot the GECS backup

"Booting CECS..."... no reset... You hear the drive head swi ng
out to 36 and back. Its |oading! The screen clears, the Desktop
appears, and ... where's the nouse pointer? The joystick's dead.

W' ve been caught! But how?

8) The nost common nethod is through checksuns. |f any bytes in the
code have been changed, a checksumroutine will usually detect
it. The protection schene can then assunme tanpering and take
appropriate action. W could hunt for the checksum code or we
coul d cover our tracks. Let's try covering our tracks.

9) W really only altered one byte in "GECSBOOT" but we'll have to
change a few nore to pull this one off. Were could we place our
code? A technique we use is to add it right to the end of the
file. The last byte of "GEOSBOOT" is at $642B so we can start
our code at $642C. But what's going to call our routine? Look
for a junmp instruction away fromthe $6000 area. At $621F, the
code junps to the $C000 area. Change that to junp to our code
(IMP $6420).

10) Now we have three bytes to correct: the drive code branch
address at $63A5 and the JMP to our new code at $6220/6221. CQur
new code should be simlar to the foll ow ng:

A 642C LDX #$E7 ; restore original drive code BNE address
STX $63A5
LDX #$03 ; restore original JMP address - |o-byte
STX $6220
LDX #$CO ; restore original JMP address - hi-byte
STX $6221
JMP $621F

Re-encrypt the code and | ook at our new code at $642C. It, too,
has been encrypted. Wite down the encrypted bytes and the new
junmp address at $6220. We'Il wite these to the backup

11) After loading the sector editor, wite our new, encrypted junp
address to Track/ Sector 1/20 - byte position 40 ($28). Then add
our new, encrypted code to the last sector in the file - T/S
1/7. Don't forget to change the |ast byte pointer at position 1
to the last byte of the new code. Using the above exanpl e code,
the new bytes would be start at position 56 ($38) and the | ast
byte woul d be at position 73 ($49). Position 1 will changed to
73 ($49).

12) Now reboot CGECS. It should load clean as a whistle. Just

K.J. REVEALED TRILOGY PAGE [97] (01990 K. J. P. B.

remenber to watch your step when dealing with protection from
Berkeley. They are notorious for their endless checksum
routines.

DESKPAK | : BERKELEY SOFTWORKS

Dealing with Berkeley's protected applications presents a
two-fold problem 1) The installation codel which stanps your GECS
serial nunber on the nmaster and does a protection check and
checksum routine. 2) The |%R%%$' & serial nunmber verification that
prevents you fromtaking your CGECS application to a friend' s house
and using it with his GECS. Both, however, are relatively easy to
break. This will be a general discussion of the first-generation of
Ber kel ey applications, using Deskpak | as an exanple.

The protection scheme on this first-generation is essentially
the same. The code first checks to see if the disk has been
installed. If it hasn't, it whips out to Track/Sector 35/0 and
reads in the block. The block contains a direct I/O routine and
sone drive code that |ooks for non-standard data. If every thing
checks out, it installs your internal GECS serial nunber to the
master (no wite-protect tabs allowed). It never does the check
again, allow ng you to copy the application to work di sks. From
then on, it does nothing but the serial nunber check. This works
fine in theory, but is rather inconvenient if you want to show it
to sonebody el se and you've forgotten your copy of GECS.

The protection does checksumitsel f, however. To bypass this,
we' ||l denonstrate a techni que we use called the byte-swap. This
entails switching bytes in the code anong thenselves to force the
protection to pass.

Get out your CGECS Programmer's Reference @uide and nake a backup

of an UNI NSTALLED Deskpak | master. Load the "DESKPAK READ' file
from the Uility Disk and and run it. The programreads
Track/ Sector 35/0 into 32768 ($8000) in nmenory. Load the $COOO
nmonitor ("49152") fromthe utility disk and study the code at
$8000. Look up the GECS subroutine calls in the reference guide
Half of this code is the drive routine that is sent to the 1541.
The ot her half suspends GEOS I/ O and sends the drive routine to the
1541.

The protection check itself is at $803E. It reads in sone bytes

and conpares them |If they all match, it falls through to $8061

O herwise, it branches to $8064. In fact, its not unlike CECS vl.2
protection (see previous GECS vl.2 discussion). W can break the
installation protection right here. However, we nust contend with a
checksumroutine located in the main code, so we nust keep the

K.J. REVEALED TRILOGY PAGE [98] (01990 K. J. P. B.

bytes intact. A sinple way is the byte swap. The code contai ns nmany
branch instructions. Wat if we swapped a BEQ (branch-if-equal) and
a BNE (branch-if-not-equal) instruction at just the right place?
Experimentation will reveal that swapping the branch opcodes at
$803c and $804B will force the code to go to $8064.

Wite this change to Track/ Sector 35/0 using Di sk Doctor from

the Utility Disk. Load "CGECS' and boot "G aphics G abber” (the only
protected application on the disk). The protection fails. Look at
the code at $8061-$8065 again. There are tw sets of LDA
instructions there, each loading a different value. Wy not try
anot her byte swap? Switch the two bytes that are being | oaded at
$8061-$8065. Now it will be forced to load a different value. Mke
this change to sector 0 on track 35. You should now have both sets
of byte swaps witten to 35/0. Boot "G aphics G abber" again. This
time it installs successfully. But you still can't use it with a
different GECS, only the copy fromwhich it was installed

The serial nunber check is really the toughest part of sone of

the applications. Witer's Wrkshop and GEQGdex both try to di sguise
the call to Cetserial Nunber”, an internal GECS routine ($c196). One
uses encryption and the other uses GEQS's ~cal |l Routi ne" which does
an indirect JSR (Junp-To-Subroutine) to the serial nunmber routine.
An additional problemis that GEOCS workspace starts at $0400 in
menory, which the C64 nornmally uses as screen nenory. Resetting the
conputer will lose all the code | ocated from $0400-$0800. Yet

anot her problemis that sonme of the applications are stored in VLIR
(variable length indexed record) files, which are split into
mul ti ple parts and special nodifications have to be made to the
directory to load these files |like nornmal prograns. We'll save
these for a future exercise

Deskpak |'s serial nunber check is conveniently |ocated at $2362

on our version. To catch this code, reset the conputer while the
application is | oading. Load the "49152" nonitor and di sassenbl e
the code at $2362. You'll see this sane routine in nost of the
Berkel ey applications. It first checks to see if the serial nunber
is zero. If it is, it executes the install routine that we disabl ed
earlier (the GetBlock and checksumroutine starts at $2448). If the
serial nunber is there, it branches to $240D and checks the seria
number in CECS to see if it matches. If it doesn't, it displays a
Di al ogue Box asking you to reboot with the correct GECS.

The whol e protection and serial nunber check can be disabl ed

rather sinmply by placing a CLC (clear-carry-flag) and RTS
(return-fromsubroutine) instruction at the top of the code
($2362). On our version of Deskpak |, the location on the origina
is Track/Sector 12/18, byte position # 156 ($9C . You might have to
calculate the position or do a manual search of the file to track
down the of fending code. Wite byte values 24 ($18) and 96 ($60) to

K.J. REVEALED TRILOGY PAGE [99] (01990 K. J. P. B.

the appropriate location in the file. You should have no trouble
booting "G aphics Gabber"” fromany copy of GEOCS now.

A good Snapshot type utility is helpful for sonme of the |atest
applications (GECile etc...). They will inevitably place the
protection in screen nmenory and the snapshotter can capture that
code for your casual view ng.

DEEP SPACE : SIR TECH
Pr ocedur e

Loading the original produces a rattle-free |oad, and an error
scan shows no standard errors. A backup nmade with the C 64 Fast
Copi er produces a non working backup. A backup nmade with a nybbl er
produces the sane non wor ki ng backup. Before starting, nake a fast
copy using the C-64 Fast Copier and use the D sk Logger to log the
files.

Wor ki ng with your backup

1) The disk | og shows us that the boot file "DS" |oads into nenory
from $0302 to $09EB. This nmeans that it starts in the autoboot
area and runs through screen menory and into BASIC RAM Load the
boot and you will see the screen react and the programw || fai
inthe first few seconds. This neans the protection is probably
in the boot file.

2) Turn off the conputer and insert Hesnmon. X to Basic and | oad the
boot file < LOAD "DS",8,1 > . \Wen the programstalls, hit
< RUNSTOP/ RESTORE > to activate the nmonitor. |Interpret menory
starting at $0801 < | 0801 > because this is the begi nning of
BASIC RAM Scroll down through nmenory and notice the BASIC
programthere. The Boot starts at the autostart vectors for
BASI C and continues on to place a BASIC boot in nenory. This is
a good way to hide it fromthe average person. Type < X > to
return to BASIC and type < LIST > to see the boot. Inspection
shows that this is the protection check as well as the | oader

3) Lets go through the code Iine by line.
1- Lock up the keyboard and set nunber of trys to O.
2- Initialize the drive.

3- Send Menory-Wites to the drive |ocations $06/$07 which
represent the Track and Sector read into $0300 in the drive.

K.J. REVEALED TRILOGY PAGE [100] (C)1990 K. J.P.B.

4)

5)

The Menory-Wites place a 37/0 into those |ocations (Track
37/ Sector 0).

4- Send Menory-Wite to drive |ocation $00 (Job Queue) $BO
(dec 176) = Seek any Sector.

5- Set up Menory Read | oop of drive |ocation $00.
6- Get value at S00.

7- Set a nunerical value for E (MR value). If trys=500 then
test for protection pass.

8- If E has not been read in as an error code ($01-%$10) then try
all over again.

9- Initialize, close channels, and test E for $01; job conpleted
successfully, and if so then branch to line 10 (pass
protection). If not, goto line 10 and crash.

10- Junp to $02A7 and crash (because no | oader has been poked in.
11- Poke in a loader and JUW to it.

Armed with this information, the way to break this code easily
is to delete line 10. One way to do that is to put a REMri ght
after the 10 which will nullify the whole line. The REM
instruction is actually represented by one byte called a token.
It is a 143 in decimal. W can easily install the byte with
Di sk Doct or.

Fromthe Utility Disk, |load Disk Doctor < LOAD "DISK D", 8 > and
< RUN >, At Track/Sector 18/ 1 Cursor to position 3 and < >
Junp to the first sector of the DS file. Use the <n > key to
follow the file to Track/ Sector 31/4. Cursor to position 232 and
use the < @> key to change the Poke byte to a REMwith a 143.
Ht <r and y >to rewite the sector.

You'll find that the backup works perfectly now and can probably
be file copied.

GRAPHI CS | NTEGRATOR 11 @ | NKMELL

Pr ocedur e:

Loading the original produces a rattle-free |oad, and an error
scan shows no standard errors. A backup nmade with the C 64 Fast

K.J. REVEALED TRILOGY PAGE [101] (C)1990 K. J.P.B.

Copi er produces a non working backup. A backup nmade with a nybbl er
produces the sane non working backup. Before starting, nmake a fast
copy using the C 64 Fast Copi er

Wor ki ng with your backup

1

2)

Bef ore beginning the break, let's repair the directory so we can
view our files. Fromthe Wility Disk, load the Disk Dr. as

< LOAD'DI SK D", 8,1 > and RUN. Wen the title screen conmes up,

i nsert your backup and hit RETURN. The Track/ Sector brought up
will be 18/1 which is the first sector of directory entries. To
repair the directory, you nmust fill the follow ng positions (in
decinal) with shifted spaces (decinmal 160).

pos 4- 44
pos 72-76
pos 104-108
pos 136-140
pos 169-174
pos 200-204
pos 232-236

When your changes have been nmade, hit <r> for rewite and <y>
for yes. Now hit <n> for the next block (Sector 7) and make the
appropriate changes to that Sector (pos 12). Again rewite the
track and hit <n> to go to the next block (sector 5). Notice the
first two bytes direct the load back to Track 18/ Sector 1 which
causes the endless directory. Using the <@ key, change position
0 and 1 to O and 255 respectively. Again be sure to rewite the
Sector.

Finally with the comuand, go back to Track 18/ Sector O.
Repair the title and ID by using the <t> text command and

pl aci ng spaces at position 144-148 and at pos 162 give a new ID
nunber such as G and again rewite the sector. Power down and
check the directory. It should appear nornal.

Wth the directory repaired, you may use the Disk Logger utility
fromthe Uility Disk to log all files on the backup

< LOAD'DI SK LOGGER',8,1 > . Inspection of the log shows a file
that resides in BASIC nenory starting at $0801 which is the

begi nning of BASIC. Let's check it out. Power down, insert your
Hesnon cartridge and power up again. <X> to BASIC and | oad the
ME file < LOAD'ME",8,1 > . List the file out. Lines 600-630
represent the call for the protection check. Let's exam ne the
call, line by line.

600 Open channels, initialize, set the Track (T) to 34 and
Sector (S) to 8.

K.J. REVEALED TRILOGY PAGE [102] (C)1990 K. J.P.B.

3)

4)

5)

6)

610 Open a channel to the drive.

620 Send a Bl ock Execute command to the drive. CHR$(66)=B
CHR$(44) =-CHR$(69)=E. In other words read Track 34, Sector
8 fromthe disk and send it to a buffer in the drive.
Execute that code starting at the first byte.

630 Close channels : RETURN to GOSUB that called the check in
l'i ne 65.

Let's exanine the Bl ock Execute code. Fromthe utility disk,

| oad the program call ed BLOCK READ. < LQAD'BLOCK READ', 8,1 > .
list the code and in line 10 set the TRack to 34 and the Sector
to 8. Place the backup in the drive and type RUN. The drive will
read the proper block and transfer the code to $C000 in the
conputer nenory. Wien the READY pronpt cones up, hit

RUNSTOP/ RESTORE to enter the nonitor.

Begi n di sassenbly at $CO00 < D CO0O0 >. Examine the code from
$C015- $CO02A. The drive reads Track 35/ Sector 0 through the job
Queue. The Error nessage is read at position $00 and if equa
to $02 (header bl ock not found), the code falls through and
pl aces a value of $7F at $003B in the drive and returns to the
BASIC programthat called the B-E in the first place. |If the
check is not satisfied, a Branch is taken to $C038 whi ch causes
the head to go to track one and go in an endl ess | oop

The break is now quite sinple. |f we place two NOPs at $C029
and $C030, the code will not be able to Branch and nust fall
through even if the protection doesn't pass. The changes can be
made wi th Disk Dr. Power down and renbve your Hesnon cartridge.
Power up and with the Wility Disk in the drive,

< LOAD'DISK D*",8,1 > . Use the conmand to read in Track
34/ Sector 8 fromthe backup. At pos $29 (decinal 41) you'll
find the BNE command. Using the <@ key, change position 41 and
42 to 234 ($EA=NOP).

This title is now broken and can be fast copied with any data
copier. Because it still uses the B-E comuand, you will not be
able to file copy. One way to possibly break the B-E code night
be to store the $7F at $3B in the drive using a MW
(menmory-Wite) comand. Replace the B-Ein the Me file with a
MW (Line 620). W will leave this to you as an exercise for
further practice.

K.J. REVEALED TRILOGY PAGE [103] (C) 1990 K. J.P.B.

| NTRODUCTI ON To K. J. REVELED |11
« Publisher's Notes »
Wel cone to Kracker Jax Revealed Vol 111. W at Kracker Jax want

to thank you for your purchase and | et you know that we do
appreci ate your support of our products.

First of all, we'll assunme that you have read Kracker Jax

Revealed Vols | & Il (the previous sections in this manual) and
that you've performed nany of the procedures in those sections. The
format of Vol |11 has changed substantially. Although we've

retai ned the cookbook approach, we have been forced to drop the
maj or types. Protection has progressed to the point of excellence
(in some cases) and is often better than the prograns that it
protects! Mst prograns today are protected in very individual
styles. In this edition of Kracker Jax Revealed, we try to hit the
hi ghl i ghts and prepare you for your trek ahead.

Pl ease understand that we can't be responsible for the nachine

| anguage training that nust be done before you can thoroughly

under stand the procedures and principles set forth in this nanual.
You don't have to be a fluent ML programrer, but you MJST have a
cursory know edge of ML and a strong natural curiosity. Don't
expect to discover (as sone beginners do) a generic nmethod of de-
protection. It just doesn't exist. W can and will give you hints,
tips, and technique8 that can be applied to other prograns, even if
they are a conpletely different protection type than discussed in
this manual .

Finally, many protection schenes are based on the fact that no
standard or nybbl e copier on the market can duplicate the program
data. This protection becones even harder to back up. No |onger are
we dealing with a sector or track of special protection; EVERY byte
on the disk is protected. These prograns nmust be either broken from
menory or have a special copier developed to duplicate that
program s format. Both of these nethods are far too conplicated to
di scuss within this manual. As you becone nore and nore proficient
at the patch nethod, the nenory break nethod will becone obvi ous.
Witing copiers is in the real mof DOS experts that have a conplete
know edge of NI L. Leave the special copiers to them

Kracker Jax Revealed Vol 11l has nmany features worth nentioning.
Berkeley fans will really enjoy Bob's new work on GECS. He shows us
exactly how to use Super Snapshot to obtain a working copy of GECS
that may be booted from ANY drive. Al so, for those of you nore
inclined to know the internal workings of GECS protection, Bob has

K.J. REVEALED TRILOGY PAGE [104] (C) 1990 K. J.P.B.

done a great job on GECS v2.0 W know you'll love this one

After trying out the many break routines throughout this nanual,
you'll want to check out the Protection Schene Bection. W show you
how to create and use disk protection. Learning by doing is a great
way to expand your know edge.

For those with the courage, we suggest the V-Max! Section. Be
war ned, a good know edge of the 1541 is nandatory.

Al so, as promised, we have included the Hacker's Utility Kit on
your work disk. W have done a slight re-format to allow those with
PAL (European) systems to load this software. Because the PAL
Systemis very different fromthe U S. Connobdore, we can't
guarantee that all the features will work properly. Sorry.

« Author's Notes »

When | first started breaking copy protection routines, there

was no such thing as "too nmuch" information. | spent a fortune
conbing BBS' s across the country | ooking for hints and tips. Every
publication that even hinted at protection information eventually
found its way to my door. | first becanme associated with Kracker
Jax after they had rel eased KJ REVEALED VOL |, which filled in
several gaps in my copy-protection education and confirned that |
was on the right track in other areas. | gained enough confidence
to subnit a parameter to Kracker Jax that was eventually published
| was subsequently asked to contribute several pieces to REVEALED
I, which I was glad to do.

If sone of the tutorials in Revealed IlIl are over your head,
don't be discouraged. There is no "easy" way to |earn protection
removal . It takes the patience of a saint and a willingness to

spend | ong, backbreaki ng hours at the console, oblivious to the
hol e being burned in the back of your neck by your spouse's

di sgusted stare. Mdst of all, it takes a thirst for know edge and a
conpetitive nature that wll not bend to the wll of the
PUZZLEMASTER

The software protection war is not a nyth: there is plenty of
evi dence that protection programrers ARE paying attention to what
we are doing and ARE taking steps to nake it harder

Bob MIls
Pr ogr anmer

K.J. REVEALED TRILOGY PAGE [105] (C)1990 K. J.P.B.

< < < BERKELEY SOFTNORKS : GECS 2.0 > > >

Warning: Trying to understand this chapter may be hazardous to
your nental health. If you haven't read "Inside Conmodore DOS'
"CSM s Program Protection Manual Vol. 2", and "The Oficial CGECS
Programrer's Reference Quide" at |east tw ce, cover-to-cover, then
turn the page

The copy protection routine in GECS has been a thorn in the

side of everyone who ever needed a working backup of their
original. A backup copy of GECS only boots and | oads properly when
all of the several layers of protection checks have been satisfied
perfectly. We found this out the hard way with our first GECS 1.3
paraneter. Wiat appeared to be an ideal way around the protection
check turned into a nightmare. Customers conplained that file

sel ection di al ogue boxes acted strangely; that the dreaded " SYSTEM
ERROR NEAR $XXXX' appeared at odd tines; and that; sonmetinmes, the
GECS System files would inexplicably disappear

That we had failed was obvi ous. Wat was not obvious was the

subtl e conplexity of the protection schene. It took al nbst a week
of sleepless nights to cone up with a satisfactory solution to the
problem |If you're still gane, let's analyze exactly what CGECS BOOT
does and how it does it.

Prepare a fast copy of your ORIG NAL GECS 2.0. It should

contain little or no nodifications to the disk structure and
directory, especially the System Boot Files "CGEQS', "GEQS BOOT",
and "KERNAL". Make sure you have a work disk ready so you can save
code to it. You will also need a reset button and the "GVON' drive
nonitor on the Revealed Il utility disk to conveniently follow the
boot routine fromits hunble beginning to the bitter end. "GVON' is
a nodified "Kracker Mon" and is NOT relocatable. It was assenbl ed
to occupy C-64 nenmory from $2000 - $3FFF, which GECS ignores unti
the inevitable entrance of "DESK TOP'. It may be activated from
BASIC with the command "SYS 8192"

If you use the included Disk Logger, you will find that "GECS"

and "GECS BOOT" (GB) |oad respectively from $0110 - $0206 and $6000
- $64A9. Using "GVON', load and exanine "CECS" in nmenory. No funny
stuff here. Its only purpose is |oading and executing GB. You nay
safely ignore this file and directly load GB with "GVON'.

The next step is to browse through the program code. You'l

find a lot of areas that don't disassenble properly because the
code is encrypted. The decryption routine is actually fairly
sinple. It may be seen near the bottomof the GB file at $6483 in

K.J. REVEALED TRILOGY PAGE [106] (C)1990 K.J.P.B.

nenory. The program code from $6140 to $6440 is encrypted with the
val ue $C9: we'll need this piece of info later. To view the
programin an executable state, change "JMP $6140" at $64A0 to
"JMP $64A0"' This creates an infinite loop fromwhich we can safely
press the reset button.

Start the decryption process from GVMON with the conmand "G 6000"
The faniliar "BOOTING GECS ..." nessage appears on the screen
the drive whirs for a few seconds, then ... nothing. Press the
reset button and re-activate GVON from BASI C (SYS 8192). Again
browse through the programcode. Things look a little |ess

conf usi ng now.

It's not immediately obvious where the call to the decryption
routine takes place. We do know that our infinite |loop at $64A0
did not happen until AFTER the disk drive was accessed. Lets start
fromthe top:

$6000: JMP to $60A8

$60A8: C-64 KERNAL system and non-naskabl e interrupt vectors
initialized. Sprites are turned off. Screen nmenory is
cleared, color nmenory filled, and the text "BOOTI NG GECS..."
is witten directly to screen nmenory.

$60EB: Check if GECS BOOT should | oad from di sk or RAM
Expansi on Unit (REU).

$612A. Prepare for loading the fast |oader (turbo) and
protection code to the drive. The JSR to $6081 at $613A
shoul d be examined closely - this is where the decryption
routine is called after the drive is initialized. Notice
that the values $64 and $82 are placed into the CG64 Stack
area ($0100 - $01FF). When the RTS at $60A2 is executed,
the mcroprocessor will pull these two values fromthe stack
and add 1 to get the return address ($6482 + 1 = $6483).

$6140: This is the entry point after the decryption is conplete.
Here, the turbo code is being transnmitted to the drive in a
convol uted way - appropriate because the drive code itself
is scattered in pieces throughout the program As if
fragmenting wasn't enough (it eventually wasn't), the turbo
code is al so BACKWARD! Backward and in pieces, the turbo
code is eventually reconstructed in the 1541 drive RAM and
finally activated at $6192.

$61A1: Begin receiving data fromthe drive. Three separate program
segrments are | oaded using zero-page indirect addressi ng node
($04/ $05 contain the current address being | oaded). The
firstsegment is |oaded into S9000. GECS keeps its disk
turbo code here, regardless of the drive type. Wthout an
REU, GECS progranms nust swap

K.J. REVEALED TRILOGY PAGE [107] (C)1990 K. J.P.B.

the turbo code for different drive types (1571 or 1581) in
and out of this reserved area as needed. Desk Top does this
(rather poorly sonetines).

$61B1: Get randomvalue fromthe C-64 VIC raster interrupt and
store it to $02FE. This becones the seed value for the GECS
serial number generated when the original disk is first
booted (installed).

$61B7: Load second segnent to $5000: This is the cold start routine
to activate the GEOS KERNAL. |If an REU is present, the code
at $C000 is copied here (see $60EB above).

$61C2: Load | ast segnent from $BF0O0 to $FFF9. This is the actua
GECS RERNAL. The first protection check by the drive is
executed prior to this. |[If the check fails, no KERNAL code
is sent. The conputer checks $05 (the | oad address high
byte) for any change fromits initial value ($BF). If it
still equals $BF, the protection check failed and GECS BOOT
resets the conputer (JMP $FCE2).

$61D6: The protection passed and a second VIC raster value is
stored to $02FF for serial nunber generation if this is a
firsttime load. Any open drive channels are closed and CECS
BOOT junps to $5000 (KERNAL cold start) indirectly through
the junp address stored at $C003.

Now t hat we have a better idea of the protection's strategy,

let's take a peek inside the drive. Reload "GECS BOOI" and again
create the infinite loop at the bottomof the decryption routine.
When the conputer freezes up, press your reset button and
reactivate "GVMON'. Using the "M (nonitor) comand, |ook for "ME"
(Menory- Execute) text in nenory between $6000 and $64A9. Wen you
find it (at $61FB on our version), renenber the execution address:
$0457.

To trap the drive code in a viewable state, we need to nake

the drive shut down without resetting. Drive nenory is normally

wi ped out during a reset. We'Il change the ME address to a DCS
routine that will exit gracefully and allow us into the drive.
Fairly reliable is TURNOFF (turn off drive notor) at $F98F. Because
the ME command is encrypted, we'll add a short routine to change
the drive address to the correct value. Reset the conputer,
activate "GVON' and rel oad "GECS BOOT" (sigh) again.

At $64A0, enter: A 64A0 JMP $64A9

At $64A9, enter: A 64A9 LDA #$8F ; change ME
, 64AB STA $61FE ;address to
, G64AE LDA #$F9 ;. TURNOFF

K.J. REVEALED TRILOGY PAGE [108] (C)1990 K. J.P.B.

64B0 STA $61FF ; ($F98F)
64B3 JMP $6140 ;continue. .

Start up the boot again (G 6000), but this tinme, as soon as you
hear the drive notor turn on, UNPLUG THE SERI AL CABLE FROM THE BACK
OF THE COWUTER. DO NOT TURN OFF THE DRI VE! Reset the conputer,
activate "GVON', THEN reconnect the serial cable to you conputer.
Using "GNON s" drive nonitor, enter drive nmenory and | MVEDI ATELY
transfer the drive code from $0300 to $07FF in drive nenory to a
safe area of nenory in the conputer. How about $8300 - $87FF ?

After the transfer has conpleted, reset the drive and save the
drive code fromconputer nenory to your work disk. Nowthat it's
safely stored, print a disassenbly of the code

Look through it carefully before you read any further. Ready?
Nervous? Do you have 'Inside Commodore DOS" open and waiting?
Lets DO IT!

$0457: Disable interrupts, save stack pointer, and signa
conputer that the data will be coming soon.

$0466: JSR to MAIN LOOP of | oader
$0483: Set up buffer pointer for data buffer at $0600.

$048B: Read and send first segnent (turbo code). First
track/sector is $13/$0D and is stored at
$0528/ $0529 for use by other subroutines.

Let's stop here. Using a sector editor or "GVON' drivenon, |ook

at the first sector of the GEOS KERNAL. This is a bl ock of
track/sector pointers (GECS VLIR file). Qur GECS shows 3 file
chains starting at $13/$0D (!!!), $14/%$11, and $14/ $0F. WRI TE THESE
DOMN! (Your GECS may have slightly different values but the concept
is the sane).

JSR $04CF: Main subroutine to read and transnmit the data. Tracing
it through reveals a fairly standard fast |oader. |
won't go into detail about these subroutines unless
they're directly related to the protection schenme. |f
you want to understand how each of the DOS and Fl oppy
Di sk Controller routines work, READ THE REFERENCE
GUI DES MENTI ONED ABOVE AND TRY ALL OF THE EXAMPLES

The data transnission routine from $03FF - $0456 is
VERY significant. Stay tuned ..

$0490: Here's where the nastiness really starts. A value of
#$59 is stored to $0413. Big deal,right? Look what
effect it has on the transni ssion routine:

K.J. REVEALED TRILOGY PAGE [109] (C)1990 K. J.P.B.

$0495:

$049F:

$04A7:

$04C2:

$04B0:

$04B5:

K. J.

LDA #$59

§
STA $0413

$0413: 2C 2A 04 BI T $042A

| |11
$0413: 59 2A 04 EOR $042A, Y

>
>
>
>
The innocuous BIT instruction has instantly been
transformed into EOR - the favorite scranmbling tool of
copy protection progranmers everywhere. Every sector
transmitted fromthis point on will be EORd with the
drive code before it's sent to the conmputer. Consider
what happens if just ONE byte of the drive code from
$042A - $0529 is altered: the main GEOS KERNAL,
excluding work areas and disk drivers, is approximately
16384 bytes. |If 1 byte of every 254 is wong, we have
64 bytes with unknown val ues occupyi ng our operating
system a systemerror for every occasion

The next few instructions should seemfaniliar if

you' ve been reading closely. They start the |oad of the
second segnment - the CECS cold start routine at $5000
Look again at the VLIR bl ock of the GEOS KERNAL: the
third set of track/sector pointers reads - you got it -
$14/ $0F, consistent with what we've |learned so far

Sonething different is happening here. |f you' ve

done your honework, you'll recognize the 1541 SEARCH
subroutine $F510. This searches the current track for
the specified sector header GCR bytes, the first eight
of themsignificant and the rest as filler preceding
the sector data block. |f SEARCH fails to find a sync
mark and 1541's nornal error handl er instead of
returning to the fast | oader

And here's the main attraction, |adies and
gentl enen. Read two GCR bytes with JSR $04F3.

Congratul ations! You've just entered the BYTE COUNT
ZONE. The protection check is checking the tail gap of
every header and data block on the current track ($14)
for 2 precisely |located bytes. The . X regi ster contains
the sector count ($13 = 19 dec). The protection check
| oops as follows: JSR $0502: This routine waits for
either a GCR $55 or $67 in the current header/tail gap
If neither byte appears, the return address is pulled
off the stack. The protection has failed and is
getting ready to call it a day.

Count $100 (256) GCR bytes on the track
Count $45 (69) GCR bytes on the track. W' ve just

REVEALED TRILOGY PAGE [110] (C)1990 K. J.P.B.

counted to the end of the data bl ock
$O4BA: JSR $0502 (see above) to check this tail gap.

$O4BD: Count $OA (10) bytes on the track. This is the next
header bl ock.

$04C2: We're back to the top of the loop. JSR $0502 (see above)
to check this header gap. Decrenment the sector count. |f
zero, we're donel otherw se branch back to $04B0.

$04C8: We've passed the protection check. Read and send
the third and | ast segnent at track/sector $14/3l
(renmenmber the KERNAL VLIR sector ?).

The drive code has done it's job and exits. Now how do we

di sabl e the protection check w thout scranbling the data?.

You might have noticed that the drive's BAM buffer from $0700-
$07FF is totally unused by the drive code. If we copy the

bl ock of drive code that's being used as the decryption key to
$0700 and change the BI TI EOR address at $0413 to | ook there
instead, we can freely alter the protection check. Change the LDY
$I CO0 at $0502 to read JMP $O4FD and the 2 bytes ($55 and $67)
wi Il never be checked.

CGetting inside the drive during the | oading process presents a
probl em however. Renmenber that the drive code is stored in pieces
in GECS BOOT. Alterations there would be tedious and

ni st ake- prone.

But if our code was already waiting inside the drive, all we have
to do is change the ME address that GEOS BOOT sends (the sane one
we changed in the first place) and we're in-like-Flint. When GECS
BOOT starts, the disk BAM (track/sector $12/$00) is sitting at
$0700. There is enpty space in the BAM from $07A0 - $O/FF. a great
pl ace for extra code

But how can we copy the drive into $0700 if we're there? W
woul d destroy ourselves. The answer is to nake our BAM code | oad
our copy/alter routine into drive buffer $0600. W then jump to
THAT code, which copies the drive code to $0700, alters the
protection check, and junps to $0457 (fast |oader entry point).

If this sounds conplicated, it's because it |IS. Use the provided
CECS 2.0 paraneter on your backup copy and exani ne t hE BAM code
It will clarify what we've been di scussing

W're still not finished with GECS BOOT! There is ANOTHER
protection check that drove us crazy until we found it. The | ast
sector of the KERNAL that's | oaded remains in the drive at $0600

K.J. REVEALED TRILOGY PAGE [II1] (01990 K.J.P.B.

when the drive code exits. The sector's |last byte pointer is set at
$3D. But PAST that code, at $4E is ANOThER check for the $55/$67
byte pair. This is called fromthe turbo code (first |oad segnent)
during the KERNAL cold 8tart. Place an RTS ($60) at position $4E to
kill this little terror.

And then there's the matter of the TROJAN HORSE routine in Desk
Top that will delete the SYSTEN BOOT files fromyour disk if it
detects any changes in GECS BOOT. To date, we have found four
versions of Desk Top containing this check, all slightly different
and very hard to pinpoint if you don't have a sound wor ki ng
know edge of the internal workings of CGECS. Again, use the provided
Desk Top paraneter to explore this further

As a final exercise, use the included GCR editor tol ook at the
header and tail gap bytes we di scussed above. They can be found at
position $OA in ANY header bl ock and position $145 in ANY data
bl ock on your ORI G NAL GECS boot di sk.

In closing, we hope you have a better understandi ng~of what kind
of effort can go into finding and disabling a protection schene as
conplex as this one. It's easy to conplain about copy protection..
but doing sonething about it is a whole new ball gane.

< < < HOWTO SNAPSHOT GECS 1.3 & 2.0 > > >

If you've ever tried using Super Snhapshot's (SSS) excellent
archiving talents on CECS, you know that any interruption of CGEGCS,
even with a hardware device, will ultinmately produce a total system
freeze or crash. There are several ninor reasons this occurs but
only one major reason: GECS uses customdrive "turbo" code to speed
up di sk accesses. It is alnost always "talking" to the currently
active drive via the serial port at $DDO0 while the drive is
checking its end of the serial bus ($1800 in drive menory) for any
command signals (load, save, etc...).

GECS keeps track of the state of the drives through 4 status
bytes (called TURBO FLAGS) |ocated at $8492 - $8495 in conputer
menory. Each of these 4 bytes corresponds to CGECS drives A through
D or DCS devices 8, 9, 10, and 11. If the status byte contai ns $00,
the drive is either inactive or is not running the turbo code (i.e.
avai l abl e for normal DOS conmands). A status of $80 indicates that
the turbo code is present in the drive but not active. Finally, a
status value of $c0 nmeans that the turbo code is up and running.

Wien the SSS button is pressed, the entire state of the conputer
is preserved. But the drive(s) running the turbo code are stil
wai ting for a command signal from GECS. At this point, any attenpt

K.J. REVEALED TRILOGY PAGE [112] (C)1990 K. J.P.B.

to comunicate with the drive through DOS is fruitless - unless

the drive is turned off and on again. Now the drive can be accessed
normal |y and the Snhapshot process can be conpl eted. However, when
the Snapshotted GECS is re-booted, it will continue no further
BECAUSE THE TURBO FLAGS STILL SHOW THAT THE DRI VES ARE RUNNI NG THE
TURBO CODE ! GECS assunes that the turbo code is active and will
try to signal the drives, GECS-style. The drives will, of course
not respond properly (if at all) and the operating system by now
totally confused, heads for the renpte island of Catatonia to sort
it all out.

Fortunately, GECS Desk Top allows us to get our foot in the door

t hrough the RESET option | ocated in the SPECI AL nenu. This option
clears the screen, re-initializes the drive(s), and opens the
current disk(s). Performsteps 1 through 9 EXACTLY as described to
properly Snapshot GECS.

1) Boot GEOCS to the Desk Top. Your system should be configured
to your liking (number and type of drives, etc..). |If not,
do it now.

2) Format a disk to contain the Snapshotted GECS files. This
wi Il beconme your new boot disk.

3) Copy the following GECS files to your new boot disk

a) "DESK TOP"

b) " CONFI GURE"

c) "Preferences" [optional].

d) "Pad Color Pref" (CECS 2.0) [optional].

e) Your current input driver file (Ex: "COW 1351")

f) Your current printer driver file (Ex: "MPS-801")

g) Any other desired files, as long as you | eave at |east 58
kbytes (237 di sk bl ocks) free.

4) Place your new boot disk into the drive fromwhich the
Snapshotted GECS will be booting

5) Open the SPECI AL nmenu and click RESET. You now have exactly
1.6 seconds to press the SSS button (for stopwatch buffs)
-OR press it before the screen clears conpletely. It's a
good idea to practice a fewtines (pretend to press the
button) until you feel confident enough for the real thing.

6) Confident, eh? Repeat step 5 but actually press the
button. The SSS sub-system nenu shoul d appear. If it doesn't,
Keep trying step 1 and steps 4 through 6, until step 6 is
conpl eted properly.

7) Turn off all drives for at least 5 seconds. Turn them back on

K.J. REVEALED TRILOGY PAGE [113] (C) 1990 K.J.P.B.

8) Enter the 555 ML Monitor. Type the foll ow ng exactly:
: 8492 00 00 00 00

Now press RETURN. This resets the TURBO FLAGS to reflect the
new status of the drives - no disk turbo; nornmal nos active.

9) Exit the nmonitor (X RETURN) to return to the SSS
sub- system nenu and sel ect the SNAPSHOT option. Save the
programto your new boot disk. \Wen the sub-system nenu
returns, select RESUVE EXECUTI ON

Wien Desk Top reappears, there will be a slight delay as GECS

upl oads the turbo code to the drives. The RESET sequence will then
continue as if nothing happened. Wien the RESET is conplete, use
the Desk Top to place the first file that SSS saved (the boot
file) to the top of the directory for easy | oading.

* * NNOT E * *

The only Iimtation to the nethod in this article is the lack of
automatic drive type detection and configuration that occurs when
booting fromthe GECS SYSTEM boot disk. If you use different

conbi nations of drives for various applications, create a boot

di sk for each of these unique conbi nations. For exanple: if the new
boot di sk was created while using a 1571 as the boot drive, don't
copy the Snapshotted CGECS file(s) to a 1541 or 1581 and expect it
to boot properly fromthat drive. GECS only has enough space in the
operating systemcode to handle 1 drive type at a tinme. This is

not the case if a Ram Expansion Unit (REU) is detected. Up to 3

di sk drivers are automatically stored in and accessed fromthe REU
by the CONFIGURE utility and Desk Top. The CONFI GURE utility was
added later to allow GECS to support new drives as they appeared
Begi nning with GECS 2.0, it is the application's responsibility to
nmove the appropriate disk driver code in and out of the reserved

ar ea.

< < < EPYX : DEATH SWORD VI /V2 > > >

I f you have studied the procedures set forth in the Rad Warrior
section, you'll find Death Sword protection to be very sinilar. At
this tinme, we have found two al nost identical versions of Death
Sword protection on the market. Both versions are identical to
each other except where noted as V2.

K.J. REVEALED TRILOGY PAGE [114] (C) 1990 K.J.P.B.

You wi |l need the follow ng:
1) An original "Death Sword" (DS) diskette.
2) A backup copy of both sides DS using any good nybbl er
3) A disk log of the DS disk to get the | oad addresses.
4) An error scan of the original DS disk
5) A reset button that will reset the screen

Exami ning the di sk map shows that the di sk appears to be

conpletely normal. This is comopn to nost Epyx rel eases. They have
an inpressive fast l|oader routine that requires a slight
nodi fication to the sector headers. A fast copier will ignore

these eccentricities, but a nybbler can reproduce themwell enough
to fool the fast |oader. obviouslyl this isn't where the protection
lies.

Load the nybbl ed copy of DS and observe what happens. \Wen the
fancy "EPYX' screen appears, the disk drive stops and the conputer
takes a permanent time-out. This, then, is where the protection
check occurs.

The DS boot file resides from $02A7 - $0303. The program start
address can be found in the BASIC warm start vector in $0302 -
$0303. The entry point is $02Cl. This routine does little nore
thanl oad the only other file in the directory "(C 1987 EPYX' and
then junps to $0600. The file resides from $0409 to $0618: SCREEN
MEMORY! This nakes it a little tougher for us to exam ne. A

sof tware based nonitor |ike "Kracker-Mn" has to use screen menory
to display. Anything |oaded there will be inmredi ately destroyed.
We nust relocate the file as we load it.

Load the $CO00 nmonitor and relocate the file by entering:
L"(o*" , 08, 1409

The file will now reside at $1409. Begin disassenbly at the entry
poi nt of $0600 (for consistency's sake, I'll refer to the actua
address. Just add $1000 to any address wi thin $0409 - $0618). You
shoul d be | ooking at a short routine that ends with a JMP to $67E9
at $0614. Examine the other subroutine calls to $05F1 and $05F4.
These are the initialization routines that start the drive code
and fast |oader. A logical place to stop the |oading process is the
JMP $67E9, but its location (screen nenory) requires us to use the
supplied File Tracer utility to patch this JKP on the nybbl ed
backup disk so that it JMP's to itself (JMP $0614). Then we'll
reset the conputer and check the code at $67E9.

K.J. REVEALED TRILOGY PAGE [115] (C) 1990 K.J.P.B.

After applying the patch to your backup, boot it. The program
shoul d freeze up. Press your reset button and | oad the $CO00
nonitor. Disassenble the code at $67E9. The subroutine call to
$68CA (V2 $68E6) reveals several calls to the load routines in
screen nenory, followed by a conparison to a byte value at $68E6
(V2 = $6902). If the byte doesn't match, the code branches to
$68EF (V2 = $690B), where it executes an undocunent ed opeode ($02)
that sends the conputer into an infinite | oop. What woul d happen
if we just bypassed this code altogether? Again, we'll have to
patch t he backup di sk.

But where is this code? Try to find it with the Byte Pattern
Searcher. You won't find it. Epyx' fast load routine requires the
disk data to be witten a special way that Commobdore Dos doesn't
understand. But we CAN patch the code in nenory, after it's

| oaded.

Use the drivenon (see Rad Warrior elsewhere in this nmanual) to
| oad the last sector of the "(C) 1987 EPYX' file
(T/'S 17/ 4 or $I 1/ $04).

Change the JMP $67E9 at position $13 (V2 $14) to read:

LDA #$60 ; An "RTS"

STA $68CA (V2 $68E6) ;is placed at top of

JMP $67E9 ;of protection check
;and then JMP

You al so nust alter the |last-byte pointer at position 1 in the
sector to reflect our added code (from$16 to $1A (V2 $IB)) so
that it |loads properly. Wite the sector back to the nybbled
backup and boot it. It worked! The protection check is bypassed.
You nay apply the sanme procedure to the other side of the disk

< < < EPYX : RAD WRRIOR > > >

Epyx, |like nmany other major software producers, uses many
different protection schenes in their program releases. The
complexity of the protection is apparently related to anti ci pated
sal es of the release. Hence, their "U S. CGold" and "Maxx Qut"
(bargain division) series are easily nybbled, with only a few
requiring a (usually) short parameter. "Rad Warrior" falls into
this group - it appears that the protection on this title was
designed to thwart only software based nybblers. The actually
protection is easy to disable - once you find it.

You wi |l need the follow ng:
1) An original "Rad Warrior" (RW diskette
2) A backup copy of RWusing any good nybbl er

K.J. REVEALED TRILOGY PAGE [116] (C) 1990 K.J.P.B.

3) Adisk log of the RWdisk to get the | oad addresses.
4) An error-scan of the original RWdisk.
5) A reset button that will reset the screen

Exami ning the di sk map shows that the di sk appears to be
conpletely normal. This is comopn to nost Epyx rel eases. They have
a VERY fast |oader routine that requires a slight nodification to
the sector headers. A fast copier will ignore these eccentricities
but a nybbler can reproduce themwell enough to fool the fast

| oader. Obviously, this is not where the protection lies.

Load the nybbled copy of RWand observe what happens. Wen the
"Maxx- OQUT" screen appears, the disk drive hangs. If you listen
closely to the drive when this happens~ you will hear the drive
head nove a | ong way across the disk before it goes into a cona.
This, then, is where the protection check occurs.

The RWboot file resides from $02A7 - $0303. The program start
address can be found in the BASIC warm start vector at $0302 -
$0303. The entry point is $02Cl. This routine does little nore

than | oad the only other file in the directory ("(C 1987 EPYX")
and then junps to $0600. The file resides from $0409 to $0626:
SCREEN MEMORY ! This nmakes it a little tougher for us to exanmine. A
software based nonitor |ike flKracker~MonN has to use screen

menory to display. Anything | oaded there will be i mediately
destroyed. W nust relocate the file as we load it.

Load the $C000 nmonitor and relocate the file by entering:
L"(Qo*", 08, 1409

The file will now reside at $1409. Begin disassenbly at the

entry point of $0600 (for consistency's sake, I'Il refer to the
actual address. Just add $1000 to any address within $0409 -
$0626). You should be | ooking at a short routine that ends with a
JMWP to $67E9 at $061E. Examine the other subroutine calls to $05F1
and $05F4. These are the initialization routines that start the
drive code and fast |oader. A logical place to stop the |oading
process is the JMP $67E9, but its location (screen nenory)
requires us to use the supplied File Tracer utility to patch this
JMP on the nybbl ed backup disk so that it JM s to itself

(JMP $061E). Then we'll reset the conputer and check the code at
$67E9.

After applying the above patch to your backup, boot it. The
program shoul d | ock up. Press your reset button and | oad the $CO0O
nonitor. Disassenble the code at $67E9. The subroutine call to

K.J. REVEALED TRILOGY PAGE [117] (C) 1990 K.J.P.B.

$6909 reveals several calls to the load routines in screen nenory,
foll owed by a conparison to a byte value at $6925. |f the byte
doesn't match, the code branches to $692E, where it executes an
undocurnent ed opeode ($02) that sends the conputer into an infinite
| oop. What woul d happen if we just bypassed this code altogether?
Againg we'll have to patch the backup di sk

But where is this code? Try to find it with the Byte Pattern
Searcher. No CGo, Joe! Epyx' fast load routine requires the disk
data to be witten a special way that Combdore DOS doesn't
understand. But we CAN patch the code after it's |oaded into the
conputer. Use the drivenon to |oad the | ast sector of the "(Q

1987 EPYX" file (18/5 or $12/$05). Wth the Kracker-Mn in drive
node, initialize the drive and place a $12 in location $06 and a
$05 in location $07. By placing an $80 in | ocation $00 and pressing
RETURN, you can read the sector into the $0300 buffer in the

drive.

Change the JMP $67E9 at position $031D to read:

A9 60 LDA #$60 ; An "RTS"

8D 09 69 STA $6909 ;is placed at top of

4C E9 67 JMP $67E9 ;of protection check
;and then JMP

You nust also alter the last-byte pointer at position $0301 in
the sector to reflect our added code (from $031F to $0324) so that
it loads properly. Wite the sector back (place a $90 i n position
$00 and press RETURN) to the nybbl ed backup and boot it. It

wor ked!

The protection check is bypassed.

< < < EPYX : SPIDERBOT > > >

Epyx, like many other major conpani es, uses many different
protection schenes in their software rel eases. The conplexity of
the protection is usually directly related to anticipated sal es of
the rel ease. Hence, their "U S. CGold" and "Maxx Qut" (bargain
division) series are easily nybbled, with only a fewrequiring a
(usually) short paraneter. "Spiderbot" is one of these: it appears
that the protection on this title was designed to thwart only

sof t war e- based nybbl ers. The actual protection is easy to disable

;nce you find it.
You wi |l need the follow ng:
1) An original "Spiderbot" (SB) diskette.
2) A backup copy of SB using any good nybbl er
3) A disk log of the SB disk to get the | oad addresses.

K.J. REVEALED TRILOGY PAGE [118] (C) 1990 K.J.P.B.

4) An error scan of the original SB disk
5) A reset button that will reset the screen

Exami ning the di sk map shows that the di sk appears to be

conpletely normal. This is common to many Epyx rel eases: they have
an inpressive fast l|oader routine that requires a slight

nodi fication to the sector headers. A fast copier will ignore

these eccentricities but a nybbler can reproduce themwell enough to
fool the fast |oader. Gbviously, this is not where the protection
lies.

Load the nybbl ed copy of SB and observe what happens: when the
"Maxx- OQUT" screen appears, the disk drive hangs. If you listen
closely to the drive when this happens, you'll hear the drive head
nmove a | ong way across the disk before it gets spindizzy. This,
then, is where the protection check occurs.

Load the $CO00 nmonitor and the SB boot filel which resides from
$02A7 - $0303. The program start address can be found in the BASIC
warm start vector at $0302 - $0303. The entry point is $02Cl. This
routine does little nore than load the only other file in the
directory "(C) 1987 EPYX' and then junps to $7F06. This file
resides from$7D09 to $7F73. Nost of this routine is the fast

| oader initialization code and drive-to-conputer transfer

routines.

At $7D2C, you can see the text for the Bl ock- Execute (B-E) conmand
that starts up the drive code on track/sector (TIS) 18/6
($12/ $06) .

The drive code is interesting to study (see "L. A Crackdown"
el sewhere in this manual for all the gory details) but, if there's
an easi er way, why bother?

Begi n di sassenbly at the entry point of $7F06. You should be

| ooking at a short routine that ends with a JMP to $67E9 at $7F24.
Exami ne the other subroutine calls to $7EFI and $7EF4. These are
the initialization routines referred to above. A logical place to
stop the loading process is the JMP $67E9. Change this instruction
so that it JM s to itself (JMP $7F24). Execute the code at $7F06
(G 7F06) . The program shoul d freeze up. Press your reset button and
| oad the $COOO nonitor

Di sassenbl e the code at $67E9. The subroutine call to $6909

reveal s several calls to the |l oad routines we saw earlier

followed by a conparison to a byte value at $6925. |f the byte
doesn't match, the code branches to $692E, where it

executes an undocunent ed opcode ($02) that sends the conputer into
an infinite [oop. What would happen if we just bypassed this code
al t oget her ?

Again, we'll have to patch the backup di sk
But where is this code? Try to find it with the Byte Pattern

Searcher. Good | uck! Epyx' fast |load routine requires the disk
dat a

K.J. REVEALED TRILOGY PAGE (119] (01990 K.J.P.B.

to be witten a special way that Conmpdore DOS doesn't under st and.
But we CAN patch the code after it's |oaded. The best place is at
the end of "(C) 1987 EPYX"' file, which ends at $7F73. Use the
drivermon to load the |last sector of the "(C 1987 EPYX' file (T/S
18/5 or $12/%$05). Change the JMP $67E9 at position $23 to read:
JMP $7F73 ($4C $73 $7F). See the Rad Warrior section el sewhere in
this manual for details on the use of the drivenon for this

pur pose.

Then add the following at position $72:

LDA #$60 ; An "RTS"

STA $6909 ;is placed at top of

JMP $67E9 ;of protection check
;and then JMP

You al so nust alter the |last-byte pointer at position 1 in the
sector to reflect our added code (from $72 to $7A) so that it

| oads properly. Wite the sector back to the nybbl ed backup and
boot it.

It worked! The protection check is bypassed.

< < < RAINBIRD : TRACKER > > >

Exani nati on and anal ysis of the protection code in "Tracker"

(TK) is a frustrating process: there are many, MANY code transfer
and decryption routines. It is very easy to get |ost and
eventual ly one gets tired of tracing this nonsense. There nust be
an easier way.

There is. But first, nake a FAST COPY of your original TK and
then boot it several times in a row so you are fanmliar with the
sequence of events that occur during the load. It's especially
inmportant to listen carefully to the drive while the programis
| oadi ng so you get the "feel" or sense of rhythm of the |oading
process. Timing~is critical to discovering the protection check

Let's exanine the | oading process. The auto-boot routine bl anks
the screen, there is sonme disk activityl then nothing for about 5
seconds. The title screen appears and the |l oad continues. After
about 45 seconds the screen again blanks and the drive shuts off.
Thirty seconds later the drive activates and you can hear the
drive head swing a |ong distance across the di sk and back again. |f
you are loading fromthe original disk, the first ganme screen wll
appear. Otherw se, a backup copy will produce garbage. So we can,
for now, assune that the protection check occurred sonetine during
that | ong head sw ng.

The next step is to find the protection code. Repeat the |oading

K.J. REVEALED TRILOGY PAGE [120] (C) 1990 K.J.P.B.

process and wait for the long head swing we di scussed above. Wen
it starts to nove back, hit your reset button. Load the $8000
nonitor and start searching for drive command text (B-E, MW ME,
etc...). Oten, these drive conmand strings are stored in nenory
in reverse, so keep trying. You should find a reversed 'MW and
'"ME stored respectively at $09A6 and $MAB. These conmands wite
to and execute code at $0300 in the drive. D sassenble the code at
$0900. Careful study will reveal what the drive is being told to
do. First, the drive routine at $90AE is sent to $0300 in the drive
by a Menory-Wite. Then, the routine is Menory-Executed after
sending 3 additional bytes: $80, $28, and $CE. The drive routine
stores these 3 bytes into job queue $01, producing a read ($80) of
track 40 ($28) Isector 14 ($CE) into drive nenory $0400. The
conmputer waits for this read to conplete then stores the sector of
data at $9600 - $96FF, not caring if the read was successful or
not. It assunes all the needed data is in place and starts up the
gane.

Use the drive nonitor and the original TK disk to look at this
sector. Initialize the disk and place $28 and $CE into job queue
$08 and $09. Then place $80 into $01. Wen the drive shuts off,
check $01 for a successful read: if it contains a $01 then the job
conpl et ed successfully (a backup should produce an error code
($02-$0A). Disassenble the data at $0400. This is the code the
protection is trying to load at $9600 in the conputer. A bad read
attenpt will not produce the correct data, therefore whatever is
| oaded into $9600 will be executed, whether its valid code or not.
This results in a systemcrash.

To produce a copyabl e backup we nust relocate this sector to a
normal DOS track. We prefer to use directory sectors when possible.

Track/sector 18/6 ($12/06) is available so use the job queue to
wite our data to it. Insert your backup copy, initialize the
drive and place a $12 into $08, $06 into $09 and $90 into $01. CQur
sector is now easily accessible - to us. The protection routine
will still look for it on track 40. W nust find a way to re-direct
the sector read to our new | ocation

There night be a sinpler way, however. The nature of the 1541

DOS is that a sector header error (which will occur with a backup
copy of SG wll NOT corrupt the current contents of the drive
buffer. That is, the data residing in the buffer will still be
intact after a header error. If we can read our sector at the
appropriate tine, the protection check will not destroy the data,
assuming it doesn't find a valid header in track 40. One way is to
"wedge" ourselves into the drive code

One of the first things the auto-boot routine does is to execute
the customloader routine in the drive. This code reads in a sector
of data and transnmits it to the conputer. What if we nodified the
routine to read our sector at $12/$06 AFTER it has

K.J. REVEALED TRILOGY PAGE [121] (C) 1990 K.J.P.B.

conpleted its other duties? This would | eave the data in $0400 as
descri bed above and the protection check would be sati sfied.

Reboot TX and allow it to load until the drive notor turns off.
Press the reset button and load in the $8000 nonitor. Exam ne the
aut o-boot code at $O0I0OE. This routine outputs a block-execute
command (backwards at $0191 - 'B-E 2 0 18 02') that starts up drive
code located on T/S 18/2 ($12/$02).

Insert your backup copy of TK, initialize the drive and use the
drivernon to load this sector into drive buffer $0300 using the job
queue. Di sassenble the code in the drive at $0300. This code, when
executed, loads T/S $12/%$12 (18/18) into drive buffer $0600 and
decrypts it. Control is then passed back to the conputer, where a
nenory-execute (M E) command of $0693 is sent to the drive. This
initializes the drive side of the | oader. To view the decrypted
code at $0600, insert your backup copy of TK and do the

fol | owi ng:

1) Use the job queue to read T/S $12/$12 into drive nenmory $0600
(T/S $12/ $02 shoul d al ready be present at $0300).

2) Assenble the follow ng at $0400:

A 0400 JSR $0314
0403 JMP $F969

3) Execute our routine at $0400 by placing the value $12 into
drive nenory $08 and $09, then place the value $EO (job queue
execute command) into $01

After a short period of drive activity, you nmay di sassenble the
decrypted code at $0600. The entry point of the |oader is $0693,
where sone setup is done. Then a loop is executed to | oad and
transmit each sector. After the load is conpleted, the code
exits by JW'ing to $D048, which re-initializes the drive. This
is the ideal place for us to "wedge" ourselves into the | oader
W can execute a job queue read of our sector at $12/$06 THEN
junmp to $D048. The drive code from $06E0 - $O6FF is filled with
zeroes and is available for our use. Assenble the follow ng code
at $06EQ:

A 06E0 LDA #%$12
06E2 STA $08
06E4 LDA #%$06
06E6 STA $09
06E8 LDA #$80
O6EA STA $01
O6EC LDA $01
O6EE BM $0C6EC
06FO JMP $D048

And the follow ng at $06C4:

K.J. REVEALED TRILOGY PAGE [122] (01990 K.J.P.B.

A 06C4 JMP $06EO

This "patch" will load our sector into drive buffer $0400 and
exit the same way as the original code

Because the |l oader is encrypted we nust al so re-encrypt the code
contai ning our patch. To do this, re-execute step #3 above.
Rewrite the re-encrypted code at $0600 back to T/S $12/$12 by

pl acing the value $90 into drive nmenory $03. Wen the drive LED
turns off, reset the conputer and try out your newy broken
backup.

< < < RAINBIRD: STARGLIDER > > >

Exani nati on and anal ysis of the protection code in "Starglider"
(SG is a frustrating process: there are nmany, MANY code transfer
and decryption routines. It is very easy to get |ost and
eventual ly one gets tired of tracing this nonsense. There nust be
an easier way.

There is. But first, make a FAST COPY of your original SG and

then boot it several times in a rowso that you're famliar with

t he sequence of events that occur during the load. It's especially
inmportant to listen carefully to the drive while the programis

| oadi ng so that you get the "feel" or sense of rhythm of the

| oadi ng process. Timing is critical to discovering the protection
check.

Let's exanine the | oading process. The auto-boot routine bl anks

the screen, there is sonme disk activity, then nothing for about 5
seconds. The title screen appears and. the | oad continues. After
about 45 seconds the screen again blanks and the drive shuts off. A
few seconds later, the drive activates and you can hear the drive
head swing a | ong distance across the disk and back again. If you
are loading fromthe original disk, the first gane screen will
appear. Otherw se, a backup copy will produce garbage. So for now,
we can assume that the protection check occurred sometime during
that | ong head sw ng.

The next step is to find the protection code. Repeat the |oading
process and wait for the long head swing we di scussed above. Wen
it starts to nove back, hit your reset button. Load the $1000
nonitor and start searching for drive command text (B-E, MW ME,
etc...). Oten, these drive conmand strings are stored in nenory
in reverse, so keep trying. You should find a reversed 'MW and
'"ME stored respectively at $90A6 and $90AB. These conmands wite
to and execute code at $0300 in the drive. Disassenble the code at
$9000. Careful study will reveal what the drive is being told to
do.

K.J. REVEALED TRILOGY PAGE [123] (01990 K.J.P.B.

First, the drive routine at $90AE is sent to $0300 in the drive by
a Menory-Wite. Then, the routine is Menory-Executed after sending
3 additional bytes: $80, $28, and $OE. The drive routine stores
these 3 bytes into job queue $01, producing a read ($80) of track
40 (%$28)/sector 14 ($OE) into drive nmenory $0400. The conputer
waits for this read to be conpl eted6 then stores the sector of
data at $4200 - $42FF, not caring if the read was successful or
not. It assunes all the needed data is in place and starts up the
gane.

Use the drive nmonitor and the original SG disk to ook at this
sector. Initialize the disk and place $28 and $0E into job queue
$08 and $09. Then place $80 into $01. Wen the drive shuts off,
check $01 for a successful read: if it contains a $01 then the job
conpl et ed successfully (a backup should produce an error code

($02 - $0A). Disassenble the data at $0400. This is the code the
protection is trying to load at $4200 in the conputer. A bad read
attenpt will not produce the correct data, therefore whatever is

| oaded into $4200 will be executed, whether it's valid code or

not .

This results in a systemcrash.

To produce a copyabl e backup, we nust relocate this sector to a
normal DOS track. We prefer to use directory sectors when
possi bl e.

Track/sector 18/6 ($12/06) is available, so use the job queue to
wite our data to it. Insert your backup copy, initialize the
drive, and place $12 into $08, $06 into $09 and $90 into $01. Cur
sector is now easily accessible - to us. The protection routine
will still look for it on track 40. W nust find a way to
re-direct the sector read to our new | ocation

There night be a sinpler way, however. The nature of the 1541

DCS is that a sector header error (which will occur with a backup
copy of SG wll NOT corrupt the current contents of the drive
buffer. That is, the data residing in the buffer will still be
intact after a header error. If we can read our sector at the
appropriate tine, the protection check will not destroy the data,
assuming it doesn't find a valid header in track 40. One way is to
"wedge" ourselves into the drive code

One of the first things the auto-boot routine does is to

execute the custom |l oader routine in the drive. This code reads in
a sector of data and transnmits it to the conputer. Wat if we
nodified the routine to read our sector at $12/$06 AFTER it has
conpleted its other duties? This would | eave the data in $0400 as
descri bed above and the protection check would be sati sfied.

Reboot SG and allow it to load until the drive notor turns off.
Press the reset button and load in the $1000 nonitor. Exam ne the
aut o-boot code at $A CE. This routine outputs a block-execute
command (backwards at $0191 - 'B-E 2 0 18 02') that starts up drive
code located on T/S 18/ 2 ($12/02).

K.J. REVEALED TRILOGY PAGE [124] (01990 K.J.P.B.

Insert your backup copy of SG initialize the drive, and use

the drivenon to load this sector into drive buffer $0300 using the
job queue. Disassenble the code in the drive at $0300. This code,
when executed, loads T/S $12/12 (18/18) into drive buffer $0600 and
decrypts it. Control is then passed back to the conputer, where a
nenory-execute (M E) command of $0693 is sent to the drive. This
initialize the drive side of the |oader. To view the decrypted code
at $600, insert your backup copy of SG and do the follow ng:

1) Use the job queue to read T/S $12/$12 into drive nenmory $0600
(T/S $12/ $02 shoul d al ready be present at $0300).

2) Assenble the follow ng at $0400:

A 0400 JSR $0314
0403 JMP $F969

3) Execute our routine at $0400 by placing the value $12 into
drive nenory $08 and $09, then place the value $EO (job queue
execute command) into $01

After a short period of drive activity, you nmay di sassenble the
decrypted code at $0600. The entry point of the |oader is $0693,
where sone setup is done. Then, a loop is executed to | oad and
transmit each sector. After the load is conpleted, the code exits
by JMP'ing to $D048, which re-initialize the drive. This is the

i deal place for us to "wedge" ourselves into the | oader. W can
execute a job queue read of our sector at $12/$06, THEN junp to
$D048. The drive code from $06E0 - $O6FF is filled with zeroes and
is available for our use. Assenble the follow ng code at $06EO:

A 06E0 LDA #$12
06E2 STA $08
06E4 LDA #3$06
06E6 STA $09
06E8 LDA 1%$80
O6EA STA $01
O6EC LDA $01
O6EE BM $06EC
06FO0 JMP $D048

And the follow ng at $06C4:
A 06C4 JMP $06EO0

This "patch" will load our sector into drive buffer $0400 and
exit the same way as the original code

Because the | oader is encrypted, we nust also re-encrypt the
code containing our patch. To do this, re-execute step #3 above.

K.J. REVEALED TRILOGY PAGE [125] (01990 K.J.P.B.

Rewrite the re-encrypted code at $0600 back to T/S $12/$12 by
pl acing the value $90 into drive nmenory $03. Wen the drive LED
turns off, reset the conputer and try out your newy broken backup

< < < NicroLeague : WF westling > > >

"WAF Westling" uses a protection schene that takes its sweet

tinme before making the protection check, which |eads you on unti
you're convinced that the backup you made is sound. Then
SURPRI SE!', it fails. Fortunately, there are two ways to create a
wor ki ng backup of this piece. You can disable the protection check
or you can use the included GCR EDI TOR to reproduce the physica

di sk protection. Let's explore the protection check first.

Use any fast data copier to make a copy of your ORI G NAL WAF.

Boot it and let it (oh so slowy) nake its way towards the
protection check, which occurs during the disk access preceding the
actual beginning of the westling match. Reset the conputer and

| oad the $1000 nonitor. Search nenory for di sk commands such as
"ME, B-E U, etc...". You should find a "U" (read sector) and
"B-E" (Block-Execute) command referencing track/sectors $12/$03
and $12/3$04 (18/3 & 4).

Use the drivenon to | oad and di sassenbl e these two sectors in
drive buffers $0500 and $0600, respectively. You are now | ooki ng at
the (fast?) | oader drive code. If you're famliar with a nornal
read of GCR data, you'll notice sonething funny about the read
routine in T/S $12/3$04 at drive nmenory $0695. This code swi ngs out
to track 35, waits for a data bl ock, and counts $144 bytes to the
end of the data block, placing us in the tail gap (this is an

ef fective protection techni que because software-based nybbl ers
will seldomcopy tail-gap bytes).

Then the schene | ooks for a GCR byte equal to the value of $73.

If it's not found, the Y register is increnented and | oops back
totry again until Y is equal to $OA (10). If the $73 byte is
found or .Y equals $0A, the current value of .Y is stored to $0300
in drive menory. The protection schene is using this odd GCR byte
($73) to set a different byte to a certain value. W can break
this protection check if we know the proper value of the Y
register.

Load the included GCR editor and read track 35 of your ORI G NAL
WAF di skette. Read in each data block and | ook for a $73 byte
starting fromposition $144 on the GCR (left) side of the display.
You should find the $73 byte on sector 0 at position $146. $146

m nus $144 equals 2, giving us the value of the Y register. You
can satisfy the protection check right here by reading this same

K.J. REVEALED TRILOGY PAGE [126] (01990 K.J.P.B.

sector on your backup copy, editing the data block so that it
contains the $73 byte at position $146, and then witing the
sector back to the backup copy. This duplicates the physical disk
protection on the backup.

If you want to conpletely disable the protection check, reload
drivenon and read track/sector $12/$04 (18/04) into drive buffer
$0600. Enter the foll ow ng:

A O6DF CPY #$02 ;this was "CPY #$QA"
06E1 BEQ $06E6 ;this was "BNE $06A2"

This "patch" will let the code execute nornmally but exit at the
proper time with the correct value in .Y (2). Wite the sector to
your backup copy and you'll have a conpletely unprotected backup

Not e: This sanme patch will have to be applied to each WAF

"Mat ch" di skette because the drive code in track/sectors $12/$03
and $12/304 is present on each of these releases - including SIDE
2 of the "Gane" diskette.

< < < SOFTWARE TOOLWORKS : MAVI S BEACON > > >

"Mavi s Beacon Teaches Typing" (MBTT) is another in a class of
protection schenes that depends upon a sector of data |ocated on a
non-standard track. The nmechanismis sinple: critical data is

pl aced on a track that is not used by standard DOS (36 - 40). A
routine is called to read in the sector and transnit the data to
the conputer. Wthout this data the programw Il either crash or
function inproperly - sonetines in very subtle ways.

Bef ore proceedi ng, use any good nybbler to copy side A tracks 1

t hrough 36 of an original copy of MBTT. Then use the provided File
Logger to determine the start and end addresses of the files on
MBTT Side A and error scan it to get an error map of the original
Try to boot your backup copy. It will fail, due to sone subtle,
deli berate alterations to track 36.

The error map shows us that valid sectors ARE present on track

36. The next step is to find the code that reads that track. Lets

| ook at the auto-boot file. Load the $2000 nonitor then insert your
backup copy of MBTT and load "MAVIS'. The file resides from $032C
to $0400. The first 2 bytes are the KERNAL "close all files" vector
(CLALL), which now contain $34 and $03. This is the entry point of
t he aut o-booter ($0334). Analysis of this code at $0334 reveal s
that a series of Block-Reads are nade of track 35 (the "U " comrand
text is located at $03D6) then a JMP to $OFQO at $03C5 conti nues

t he | oadi ng process.

K.J. REVEALED TRILOGY PAGE [127] (01990 K.J.P.B.

Change the code at $03C5 to JMP $2000 and execute the code at
$0334 (G 0334). The screen will turn black, the disk drive wll
activate, and after a short tine, control will return to the
nonitor. Disassenble the code at $OFO0. The routine from $OFQO -
$0F22 copies the freshly-loaded code from $0C3C - $123B to

$033C - $093B, then JMP's to $0623. This nmkes viewing the code in
its proper location nore difficult. By locating and executing the
protection code in screen nmenory ($0400- $07F7), MBTT protects
itself froma nonitor like the one we are using. In addition, a
normal reset of the conputer will destroy ALL of this code. W can
relocate it ourselves to a nore convenient area ($733C) by using
the monitor's (T)ransfer conmand:

T OC3C 123B 733C

When di sassenbling this relocated code, renenber to add $7000 to
all address references in the programand the follow ng text.

The entry point here is at $0623 ($7623 - renenber: add
$7000) . The routine at $0633 copies the drive fast |oader code to
$5000 - $52FF, then calls the subroutine at $0342 to send it to the
drive, execute it, and change the KERNAL LQOAD vector to point to
the fast |loader. The next step at $064F is the key to the
protection schene: what appears to be a normal load routine is
actually reading the protected sector into $0C00. The KERNAL SETNAM
call at $0654 is pointing to a rather odd file nane consisting of

4 hex bytes at $0690 with the val ues $01 $24 $10 $01. Hex 24 ($24)
36 deci mal and $10 16. Track/sector (T/S) 36/16 is the sector
containing the protected data! The data is then decrypted and noved
to $0002, where it is executed to continue the |oading process.

The easiest way past a protection schene like this is to capture
the data ourselves, wite it to a safe place on our backup copy,
and change the protection code to | ook at our new |l ocation. This
will be especially easy because the code is not encrypted. To do
this, enter the drivenon, insert an ORIA NAL NBTT, and initialize
the drive. Use the drive's job queue to read in T/S $24/$1 0 (our
protected sector) and wite it to your backup copy. An unused
directory sector is usually a good bet, so we'll use T/S $12/$12
(18/18).

The | ast step is to change the reference to the origina

protected sector to our newy relocated sector. Recall that the
code we've been anal yzing was | oaded fromtrack 35. Use the

provi ded Byte Pattern Scanner to search for the 4 hex bytes ($01
$24, $10, $01) that we discussed earlier. Enter 35 for the starting
AND endi ng tracks. The scanner should report the bytes' |ocation on
T/S 35/ 14 ($23/$0E) at position $54 (84). Use any sector editor or
the drivenon to change the 2 bytes at position $55 on T/S 35/14
($23/$0E) from $24/$10 to $12/$12 and rewite themto your backup

K.J. REVEALED TRILOGY PAGE [128] (01990 K.J.P.B.

copy. Now the protection scheme will ook for our relocated data on
track/sector 18/18 ($12/%$12), load it in, and continue on its merry
way. After you copy sides B through D of MBTT using any nybbl er
(tracks 1 through 35) you'll have a fully functional, unprotected
backup of your val ued typing tutor.

< < < CAPCON : 1942 V2 & CGHOSTS & GOBLINS > > >

It was quite a surprise when CAPCOM rel eased these titles using

a protection scheme other than RapidLok. This scheme is as
different from RapidLok as it is easy to trace and defeat. Please
note that both progranms are identical in their protection check
routi nes except as noted.

You wi |l need the follow ng:
1) An original "1942" or "Ghosts & Goblins" diskette.

2) A backup copy of both sides of 1942 or Chosts & Goblins using
our "C 64 Fast Copier"

3) Adisk log of the 1942 or Chosts & Goblins disk to get the
| oad addresses.

One thing is obvious when you boot the copy of these prograns:

t hey check protection inmedi ately! Load the $8000 Kracker-Mn then
the boot file "1942 or GHOSTS & GOBLINS". They | oad from $O2BB-
$0305. The BASI C col d/warm start vectors at $0300/ $0302 show t he
entry point to be $02D6. The boot file loads the "1.0" file, then
jumps to $CCOO.

Load "1.0", which resides from $C900 - $DOOO. The entry point at
$CCOO JMPs to $CC71, which calls a subroutine at $C900. This
subroutine sends protection check code to the drive. If you | ook at
nenory in the range $CAQO - $CAFF, you will see numerous BACKWARDS
"Menmory-Wite" (MW conmmands. The drive code is at $CA8D. This
code | ooks for sone special bytes on the disk and stores themin
drive nenory. Wien its finished, the conputer Menory-Reads t hem
into nmenory and stores them

Di sassenbl e the code from $C900 and keep scrolling down to

$COEQ. This is the MR routine. At $COEC, it reads in 3 bytes and
over-wites theminto $CA87 - $CA89. It checks $CA87 for a zero
value. If it's zero, the protection fails. If not, it reads 2 nore
bytes into $CABA - $CA8B. At $CA36, the weak point in this
protection schene becones readily apparent. It checks the 5 bytes
fromthe drive for specific values. It even shows us the values! If
all the values are correct, it stores an $FF at $CFFF. Lets store

K.J. REVEALED TRILOGY PAGE (129] (01990 K.J.P.B.

t he $FF oursel ves and see what happens. Change the code at $CA3I
to read:

A CA3l LDA #3$FF
CA33 STA $CFFF
CA36 RTS

Now execute the | oader (G CCOO. It should load. In fact, if you
return to the subroutine call at $CC71, you can see where it checks
the value of $CFFF. If it doesn't match, it goes into an endl ess

[oop. You could change the JMP $CC7l at $CCOO to JMP $CC79 for a
one-byte break ($71 = $79)! Use the File Tracer utility to nmake any
of these changes to your backup copy for a conpletely un-protected
backup.

< < < EPYX : L.A CRACKDOMN > > >

"L. A Crackdown" represents state of the art disk protection
caught with its pants down. It is wuncopyable with software
nybblers, but it CAN be had with a little persistence and

i ngenuity.

You wi |l need the follow ng:
1) An original "L.A Crackdown" (LAC) diskette.
2) A backup copy of LAC using "C 64 Fast Copy".
3) Aformatted blank work di sk

4) A printout or the results of an error-scan of both sides of
the original diskette.

Exani ni ng the di sk maps show that side 2 is conpletely nornal,

but tracks 1 - 5 and part of track 18 on side 1 are unreadabl e by
normal nethods. A directory shows only 2 short files with 432

bl ocks free on the diskette. W know fromour error-scan that there
are very few unused sectors on side 1. So where is the program
coming fron? Use the file tracer to determine the files' beginning
and endi ng addresses. Boot MONI OO0, and let's exani ne these 2
files. The first file |oads at $02A7 - $0304. Disassenbly shows
that it does nothing nore than |l oad the second file, followed by a
JMP to $CAQCO

Load the "(C) 1988 EPYX' file. It resides from $C74F - $CA19.
Di sassenbl e from $CACO, which is the entry point. The first few
instructions do sone initialization of the system followed by 2

K.J. REVEALED TRILOGY PAGE [130] (C) 1990 K.J.P.B.

JSR's and then a JMP to $4000. Look at the code in the first
subroutine at $C9Fl. Careful tracing will reveal that this routine
boots the fast I|oader code in the drive by issuing a

' Bl ock- Execute' command to the drive. The command string is |ocated
at $C955 and the drive code is stored on track/sector (T/S) 18/6
($12/306). We'll look at that in a nonment. The second subroutine is
the conputer side of the | oader that comruni cates with the drive
and retrieves the data. After the | oad has conpleted, the JW to
$4000 i s execut ed.

Let's stop the program after the |oad. Replace the JMP to $4000
with JW $CAl 6. This creates an endl ess | oop that we can interrupt
with RUN STOP- RESTORE. Then, fill nmenory from $4000 - $BFFF with an
oddbal | value (I use $99). Make sure the ORIG@ NAL LAC disk is in
the drive and then execute the code at $CACO. The screen should

bl ank, followed by a flurry of disk activity. \Wen the screen
re-appears (full of garbage) press RUN STOP- RESTORE and re-enter
the monitor (5Y54096). Switch in the RAM underneath BASI C (pl ace a
$36 at location $02 if you are using Kracker-non) and | ook for the
start of your filler bytes. You should find themat $A900. The data
| oaded from $4000 to $ASFF.

If you try to execute the code at $4000, the conputer will [Iock
up. Way? Because the fast |oader in the drive is still running and
it polls the serial bus constantly, waiting for the next I|oad
command. Only a conplete reset of the drive will re-establish
communi cati on. What we nmust do is start up the drive code before
executing the code at $4000. Recall that the routine at $C9F1 was
the routine that activated the drive code. Turn the drive off for
three seconds, then back on. Place a JSR $C9FI at $3FFD and save
the code from $4000 - $A900 to your work disk. Re-insert the

ORI G NAL LAC diskette and again load the "(C) 1988 EPYX" file, then
execute the code at $3FFD. If the title screen appears after a
noment, you' ve done everything right. The code from $4000 - $A900
CAN be saved from nmenory, reloaded and started back up if the "(C
1988 EPYX' file is al so | oaded.

Now let's look at the drive code on T/S 18/6 ($12/$06). Rel oad
"MONI 000", insert the ORIGA@ NAL LAC, and initialize the drive. Use
the drive nonitor to load the sector into drive buffer $02 ($0500
in drive menory) so we can disassenble it. Please refer to the Rad
Warrior section el sewhere in this nmanual. The $0500 buffer is
accessed at drive locations $OA (Track) and $OB (Sector). Use

| ocation $02 to execute the command byte $80. The code from $0500

$051F is a decryption routine. It then JMP's to $0160. If we let it
JWP, we will lose control of the drive to the fast | oader. To view
the decrypted code at $0160, place a 'JMP $F969' (job conpl eted) at
$0522 and $EO (execute) in drive job queue $02. After the drive
notor shuts down, disassenble the code at $0160. This routine reads
and decrypts the drive code located in the protected sectors on

K.J. REVEALED TRILOGY PAGE [131] (C) 1990 K.J.P.B.

track 18. How are we going to trap that drive code so we can use it
on an un-protected disk?

Clearly, we nust let the routine continue and interrupt it at

the right nmonment. Study the code. The protected drive code is
stored from $0300 t hrough $06FF by the routine. At $0OLAD, a JSR
$OBBE is executed. Since this is the first call made to the newy

| oaded drive code, this seems a good place to stop it. Again, place
a 'JMP $F969' at $A AD. To continue execution of the code, place a
"JMP $0160' at $0500 and place $EO in drive job queue $02. After
the drive notor shuts down, disassenble the code at $0300 -

$O6FF.

Now we need to save it. Insert your backup copy and initialize

the disk (@). The error-scan shows that there are several unused
directory sectors on side 1 so we can safely save our

new y-captured code to these - we'll use sectors 15 - 18 ($OF -
$12). Using the drivenon, place the follow ng bytes into job queue
$06 - $OD: 12 OF 12 10 12 11 12 12. Then place $90 (wite job) into
job queue $00, $01, $02, and $03. VAit until the drive nmotor shuts
of f. The needed drive code is now stored on your backup disk

The next step is to trap and save the decrypted code on T/S
$12/$06 and wite a short routine to |oad up our four drive code
sectors. Again, read T/S $12/$06 into drive nmenory $0500 and pl ace
"JMP $F969" at $0522. Place $EO in drive job queue $02 to decrypt
the code. Transfer the decrypted code from $0160 - $A FF to $0560
Qur new start-up routine at $0500 will load the four drive code
sectors using the DOS job queue. Use the assenbly capability of the
nonitor to enter the following into drive nmenory:

A 0500: SE

, 0501: LDX 10 ;move code to a safe place
, 0503: LDA $0500~X

, 0506: STA $0700, X

, 0509: I NX

, 050A: BNE $0503

, OSOC: JNP $070F ;continue execution

[S T B S I S oy S—"

Transfer the code from $0500 - $05FF to $0700. Continue entering
code at $070F:

A 070F: LDX 1$0D ;load up the job queue with T/S
, 0711: LDA $0740,X ;nunbers and read conmands ($80)
0714: STA 300, X

0716: DEX

0717: BPL $0711

, 0719: LDX #%$03 ;wait until all sectors have

, 071B: LDA $o00, x ; been | oaded

, 071D. BM $071B

, 071F. DEX

[O S T S S B S Sy |

K.J. REVEALED TRILOGY PAGE [132] (01990 K.J.P.B.

], 0720: BPL $071B

], 0722: SHI ; move code at $0760 to $0160
], 0723: LDX #$60

], 0725: LDA $0700, X

], 0728: STA $0100, X

1, 072B: I NX

], 072C. BNE $0725

], 072E: JWMP $A AD ;fire up the fast | oader

3: 0740 80 80 80 80 00 00 12 OF ; DOS j ob queue data
3.0748 12 10 12 11 12 12

Transfer the code at $0700 - $O7FF back to $0500. Wite it to
t he backup disk by placing a $90 into drive job queue at $02.

The | ast steps involve nodi fying the BAM of the backup disk so
you can copy the $4000 file on your work disk to the backup. You
nmust then alter the auto-boot to |l oad both the $4000 file and " (O
1988 EPYX", start up the drive code (JSR $CF91) and JMP to the
entry point ($4000). The $4000 file should be 106 bl ocks | ong.
Curiously enough, the tracks now available, 1 - 5 (5 * 21 = 105),
pl us the one unused sector on T/S $I1/$0C, totals 106 bl ocks!

Load the BAMinto drive nenory $0500. Use the nonitor to enter
the foll owi ng data:

1:0504 15 FF FF |F 15 FF FF | F
]1:050C 15 FF FF |F 15 FF FF | F
1:0514 15 FF FF | F

This makes tracks 1 - 5 available. Now till $0518 - $058F with
$00 to allocate the rest of the available sectors. To free-up the
sector at $I1/3$0C enter:

]1:0544 A 00 10 00

Pl ace $90 into job queue $02 to wite the BAM back to your
backup. Initialize the diskette (@) and view the directory (@).
It should show 106 bl ocks free.

Modi fying the auto-boot file to | oad our $4000 file presents a
problem because it resides in the directory (T/S $12/%02).
Re-saving the file will use the first available sector: nanely, our
much needed bl ock at $l 1/$0C. What we CAN do, after nodifying the
aut o-boot, is use the drive nonitor to place the auto-boot code on
to $12/$02. Return to the conputer nonitor and load the "L. A
CRACKDOMN' file. Enter the followi ng commands and code:

T 02D1 2EC 02A7 ;copy load routine to $02A7

K.J. REVEALED TRILOGY PAGE [133] (0) 1990 K. J.P.B

A O2ED JMP $02A7 ; change JMP $4000 to our new code
0302 CC 02 ;new entry point for auto-boot ($02CC)
A 02C3 JSR $C9F1 ;fire up the drive code
02C6 JMP $4000 ;continue execution

02F0 4C 41 ;our new file nane ("LA")
A 02B2 LDX #$FO ;point load to our new file nane
Toget her, these changes will load the "(C 1988 EPYX' file and

our new "LA" file, activate the drive code, and start-up the
program Now we mnust copy the routine over the original. Enter the
drive nonitor and load T/S $12/$02 into drive nmenory $0500. Copy
our new code into the drive by entering:

TC 02A7 0300 0504

Re-write the nodified sector to the backup diskette. Return to
conputer nonitor and insert the work di sk containing our $4000 file
and load it. Switch out BASIC (place a $36 at conputer |ocation $02
when usi ng Kracker-Mn), insert your LAC backup copy, and save the
file, naming it "LA". Adirectory of the diskette should show O

bl ocks free. Your backup copy is now conpl et ed.

< << V-MAX v1.? > > >

When V- MAX! first appeared on the copy protection scene, one

could stay up late at night and al nost hear the endl ess nocturna
muttering fromevery protection renmoval expert in the country. Wth
two, and sonetines three | evels of physical disk protection, here
was a fornidable foe, indeed! W have identified two nmjor
versions of V-MAX!. Information on the last nodifications of V1 is
included in this Tutorial

LEVEL 1:

Protection level 1 is the nethod of storage of the custom fast

| oader code on a V-MAX! formatted disk. On the naster disk, the
drive code is pre-processed by subnmitting each byte of the drive
code to a routine that generates two CCR bytes for each drive
code hex byte. This is then attached to a series of carefully
chosen bytes and witten to a track (usually track 20) on the
master disk in one disk revolution. The only way to reproduce
this track is with a hardware-based copi er

K.J. REVEALED TRILOGY PAGE [134] (01990 K.J.P.B.

LEVEL 2:

V- MAX! uses only two density levels in its disk format. Instead
of the two nornmal density levels used for tracks 25 - 40, the
density level for tracks 18 - 24 is substituted. To copy the

di sk properly (excluding track 20), you mnmust use a copier
capabl e of detecting and reproduci ng these abnoruial densities.
The quality of the copy is very inportant and shoul d be nade on
a drive that is in excellent condition. Correct drive speed is
of the utnost inportance!

LEVEL 3:

Some V-MAX! titles require ninor changes to a sector or two to
disable a third level of protection that | ooks for a hard-to-
copy byte sequence on a track. Finding these little routines is
actual ly the hardest part of making a backup copy of a V- MAX
protected program |f you don't have a nodified 1541 DOS KERNAL
that can trap this protection code (it executes in the comand
buffer at $0200), you have little hope of finding and breaking
these routines. Because of this, we'll have to give you these
nodi fications without further explanation

The followi ng pages contain specific instructions for making
functional backups of three V-MAX'ed titles: Xevious, Into The
Eagl e' s Nest, and Paperboy.

* V-MAX! V2 is a whole new ball ganme, and requires 8K of drive

RAM to duplicate. Special copier routines nust be witten for these
protection schenes. Al so, for your information, we have spoken to
several software publishers about V-MAX!, and their prograns using
it. They claimthat V-MAX! is NOT a protection schene, but a fast

| oader systemonly. W are skepti cal

< < < M NDSCAPE: |INTO THE EAGLE' S NEST > > >

The entire protection renoval process will take place in the

drive. We are going to let the protected code on track 20 load into
the drive and then re-wite it to sone enpty directory sectors. W
will then nodify the code that reads track 20 50 that it instead

| oads our newy-filled sectors.

Prepare a work copy of EAGLE' S NEST using the MAX Copi er on your
utility disk, and then load the $1000 nmonitor. Insert your origina
EAGLE' S NEST, initialize the drive (~1) and enter the drive-non.
W' || be using the 1541/71's job queue to do a |lot of the work for
us.

Read TI'S $12/$0D into buffer $0700 by entering:

K.J. REVEALED TRILOGY PAGE [135] (C)1990 K. J.P.B.

:O0CE 12 OD
: 0004 80

Di sassenbl e the code at $0700 (D 0700). The first thing the code
does is nove the drive read/wite head forward two tracks to track
20. It then initializes a set of pointers to start the |oad process
at buffer $0300 and starts reading bytes fromthe drive. There are
no sync marks on the track: the routine reads until it finds a GCR
byte with the value $5A, of which there is a long series. Wen the
$5A byte sequence ends, the code reads and EOR s each successive
pair of bytes together and stores the result byte to buffers

$0300 - $O6FF. This produces the custom fast |oader code.

You can now understand how a nornmal nybbler is dead in the water
if it can't reproduce this track. But we can trap the code easily.
Bypass the JMP instruction at $0797 by entering:

] A 078E LDA #$0l
], 0790 JVP $F969

This will return control to the drive-nbn when the code has
fini shed execution. To execute it, enter

: 0004 EQ

When the nonitor returns you will be able to look at V-MAXI in al
its glory. We first nust make a minor nodification to the code in
case your work copy is not perfect. There is a sector checksum
verification routine at $03F3 that will fail if the sector checksum
is not zero. This can be defeated by entering:

:03F5 A9 00

Now we need to re-wite the | oader code at $0700. Start with a
fresh copy by re-loading T/S $12/$0D |i ke we did above.

Directory sectors $04, $07, $0A, and $OC will contain the code
from $0300 - $O6FF. Begi nning at $0700, re-wite the drive code as
fol | ows:

0700 SEI ;disabl e interrupts

0701 LDX #$0D

0703 LDA $071A X ;store read data to job queue
0706 STA $00, X

0708 DEX

0709 BPL $0703

070B CLI

070C LDA $00 ;wait for read to conplete

070E ORA $01

K.J. REVEALED TRILOGY PAGE [136] (C) 1990 K.J.P.B.

0710 ORA $02

0712 ORA $03

0714 BM $070C

0716 SEI ;continue normally ..
0717 JMP $078E

071A 80 80 80 80 00 00 12 04
0722 12 07 12 OCA 12 OC

Make sure all of the original code from $078E - $O/FF is |eft
undi st ur bed.

Now wite all the code to the work copy by inserting your work
copy into the drive and entering:

]1:0006 12 04 12 07 12 QA 12 OC
]: OOCE 12 CD
]:0000 90 90 90 90 90

There is the third | evel protection present on this title. To
remove it, enter the follow ng:

: 0006 18 OD
: 0000 80
: 0362 6B
- 036E 45
: 0000 90

e e e —

That's all there is to it! Enjoy your backup copy.

< < < NI NDSCAPE: PAPERBOY > > >

The entire protection renoval process will take place in the

drive. We are going to let the protected code on track 20 load into
the drive and then re-wite it to sone enpty directory sectors. W
will then nodify the code that reads track 20 so that it instead

| oads our newy-filled sectors.

Prepare a work copy of Paperboy using the MAX Copi er on your
utility disk, and then load the $1000 nmonitor. Insert your origina
Paperboy, initialize the drive (@) and enter the drive-non. W'l
be using the 1541/71's job queue to do a lot of the work for us.
Read T/S $12/$0D into buffer $0700 by entering:

:O0CE 12 OD
: 0004 80

K.J. REVEALED TRILOGY PAGE [137] (01990 K. J.P.B

Di sassenbl e the code at $0700 (D 0700). The first thing the code

does is nove the drive read/wite head forward two tracks to track 20.
It then initializes a set of pointers to start the |oad process

at buffer $0300 and starts reading bytes fromthe drive. There are

no sync marks on the track: the routine reads until it finds a GCR
byte with the value $5A, of which there is a long series. Wen the
$5A byte sequence ends, the code reads and EOR s each successive

pair of bytes together and stores the result byte to buffers

$0300 - $O6FF. This produces the custom fast |oader code.

You can now understand how a nornmal nybbler is dead in the water
if it can't reproduce this track. But we can trap the code easily.
Bypass the JMP instruction at $0797 by entering:

]A 078E LDA #$01
], 0790 JMP $F969

This will return control to the drive-npbn when the code has
fini shed execution. To execute it, enter

: 0004 EO
When the nonitor returns you will be able to ook at V-MAX! in
all its glory. We first nust make a nminor nodification to the code
in case your work copy is not perfect. There is a sector checksum
verification routine at $03F3 that will fail if the sector checksum

is not zero. This can be defeated by entering:
: 03F5 A9 00

Now we need to re-wite the | oader code at $0700. Start with a
fresh copy by re-loading T/S $12/$0D | i ke we did above.

Directory sectors $04, $07, $0A, and $OC will contain the code
from $0300 - $O6FF. Begi nning at $0700, re-wite the drive code as
fol | ows:

0700 SEI ;disabl e interrupts

0701 LDX #$0D

0703 LDA $071A X ;store read data to job queue
0706 STA $00, X

0708 DEX

0709 BPL $0703

070B CLI

070C LDA $00 ;wait for read to conplete

070E ORA $01

0710 ORA $02

0712 ORA $03

0714 BM $070c

0716 SEI ;continue normal Iy

K.J. REVEALED TRILOGY PAGE [138] (C) 1990 K.J.P.B.

0717 JMP $078E

071A 80 80 80 80 00 00 12 04
0722 12 07 12 OCA 12 OC

Make sure all of the original code from $078E - $O/FF is left
undi st ur bed.

Now wite all the code to the work copy by inserting your work
copy into the drive and entering:

]1:0006 12 04 12 07 12 QA 12 OC
]: OOCE 12 CD
]:0000 90 90 90 90 90

There is the third | evel protection present on this title. To
remove it enter the follow ng:

: 0006 19 O
: 0000 80
: 035C 60
: 0368 6F
: 0000 90

e e e —

That's all there is to it! Enjoy your backup copy.

< < < HNDSCAPE : XEVIOQUS > > >

The entire protection renoval process will take place in the

drive. We are going to let the protected code on track 20 load into
the drive and then re-wite it to sone enpty directory sectors. W
will then nodify the code that reads track 20 50 that it instead

| oads our newy-filled sectors.

Prepare a work copy of Xevious using the MAX Copi er on your
utility disk, and then load the $1000 nmonitor. Insert your origina
Xevious, initialize the drive (@) and enter the drive-non. W'll
be using the 1541/71's job queue to do a lot of the work for us.

Read T/S $12/$0D into buffer $0700 by entering:

:O0CE 12 OD
: 0004 80

Di sassenbl e the code at $0700 (D 0700). The first thing the code
does is nove the drive read/wite head forward two tracks to track
20.

It then initializes a set of pointers to start the |oad process
at buffer $0300 and starts reading bytes fromthe drive. There are

K.J. REVEALED TRILOGY PAGE [139] (01990 K. J.P.B

no sync marks on the track: the routine reads until it finds a GCR
byte with the value $5A, of which there is a long series. Wen the
$5A byte sequence endsl the code reads and EOR s each successive
pair of bytes together and stores the result byte to buffers

$0300 - $06FF. This produces the custom fast |oader code.

You can now understand how a nornmal nybbler is dead in the water
if it can't reproduce this track. But we can trap the code easily.

Bypass the JMP instruction at $0797 by entering:

]A 078E LDA #501
], 0790 JMP $F969

This will return control to the drive-npbn when the code has
fini shed execution. To execute it, enter

: 0004 EO

When the nonitor returns you will be able to ook at V-MAX! in

all its glory. We first nust make a nminor nodification to the code
in case your work copy is not perfect. There is a sector checksum
verification routine at $03F3 that will fail if the sector checksum
is not zero. This can be defeated by entering:

:03F5 A9 00

Now we need to re-wite the | oader code at $0700. Start with a
fresh copy by re-loading T/S $12/$0D | i ke we did above.

Directory sectors $04, $07, $0A, and $OC will contain the code
from $0300 - $O6FF. Begi nning at $0700, re-wite the drive code as
fol | ows:

0700 SEI ;disabl e interrupts

0701 LDX #$0D

0703 LDA $071A X ;store read data to job queue
0706 STA $00; X

0708 DEX

0709 BPL $0703

070B CLI

070C LDA $00 ;wait for read to conplete

070E ORA $01

0710 ORA $02

0712 ORA $03

0714 BM $070C

0716 SEI ;continue normally ..
0717 JMP $078E

071A 80 80 80 80 CD 00 12 04
0722 12 07 12 OCA 12 OC

K.J. REVEALED TRILOGY PAGE [I40] (C) 1990 K.J.P.B.

Make sure all of the original code from $078E - $O/FF is |eft
undi st ur bed

Now wite all the code to the work copy by inserting your work
copy into the drive and entering:

]1:0006 12 04 12 07 12 OA 12 0C
]: OOCE 12 0D
]:0000 90 90 90 90 90

That's all there is to it! Enjoy your backup copy.

< < < PROTECTI ON SCHEME #1 > > >

Protection scheme #1 is a sinple routine that creates DCS error

22: DATA BLOCK NOT FOUND. This is acconplished by reading a
sector on disk, changing the default data block ID (normally $07)
in drive nenory $0047 to a new value, then rewiting the data bl ock
using the new data block I D. Please note that any good nybbl er can
reproduce this protection type.

There are two sinple ways for a programmer to use this type of

copy protection. One way is to create the error, and check that the
error is present at that sector. The other nmethod is to create the
error in a sector that contains data inperative to the operation of
the program Only a specialized routine can read in the data if the
error is present. If the error isn't present, the routine witten
to pull the sector will not operate correctly and the data will be
left behind. Let's start with this type.

22 Error - Data Recovery
The new data block IDis a GCR value whose high bit (bit 7) nust

equal zero; therefore, the new I D can have one of the follow ng
range of val ues:

Dec Hex
0-7 $00 - $07
9 - 31 $09 - $IF
64 - 95 $40 - $5F
112 - 127 $70 - $7F
192 - 207 $C0 - $CF

Any attenpt to read a sector with a non-standard data block ID
will fail unless the default value in drive nenory $0047 is changed
to the new data bl ock I D val ue.

K.J. REVEALED TRILOGY PAGE [141] (O 1990 K. J.P.B

Use the included BASIC program "DBWRI TE" to rewite the desired
sector(s) with a new data block ID (creating the 22 Error).
"DBREAD' can then be used to read the protected sector(s) and
place it in drive menory at $0300 where it can be accessed with a
"Menory- Read" command. Fromthere you can either transfer the code
down to the conputer or leave it in the driveg if it's drive code.
You nmay use the included assenbly code in a machi ne | anguage
programif you wi sh.

DBWRI TE. ASM

This programis for educational and personal use only
No commercial use of this programis permtted.
Al rights reserved (C 1989 K J.P.B.

EIE R R kR R I O I I R R I R Sk S R R R R S I I Rk S R O O

Job:
Rewite a data block with a different
data bl ock I D code. High nibble of code
nust be $Ox, $Ix, $4x, $5x, $8x or $Cx;
(x = any hex nunber from $0- $F)
The followi ng code nust be witten to
drive menory $0500 and can be executed
fromBASIC with the follow ng statenent:

OPEN 15, 8,15,"UC. "+CHR$(new i d code) +CHR$(t r k) +CHR$(sec)
CLCSE 15

EIE R R kR R I O I I R R I R R S R R R R S I Rk I R O
)

org $0500 ;code executes in drive here witdbid
sei ;disabl e interrupts

lda $47 ;save current data block id char
sta oldid

ida $203 ;get new id from conmmand buffer

sta new d

lda $204 ;get track for new data block id
sta $06 ;will be read into $0300

Ida $205 ;get sector for new data block id
sta $07

ida #$BO ; seek track/sector

jsr waitjob

ida #$80 ;read track/sector into $0300

jsr waitjob

lda newd ;setup new data block id

sta $47

ida #$90 ;wite trise with new data block id
jsr waitjob

pha ;save error code ($01 = O K.)

lda oldid ;restore old data bl ock id

K.J. REVEALED TRILOGY PAGE [142] (C) 1990 K. J.P.B.

st a$47

pl a ;get error code

cli ;enabl e interrupts

rts ;and exit

wai tj ob

st a$00 ;store job code to job queue
cli ;enabl e interrupts

wj | oop

i da$00 ;wait for job to finish
bmi wj | oop

sei ;disabl e interrupts

rts yreturn

newid .hex 00 ;storage for new data block id
oldid .hex 00 ;storage for old data block id

end
DBREAD. ASM

This programis for educational and personal use only
No commercial use of this programis permtted.
Al rights reserved (C 1989 K J.P.B

EIE R R kR R I S O I I R R I R R R R R R I I I Rk S R O

Job:
Read a data block with a different
data bl ock I D code
The followi ng code nust be witten to
drive menory $0500 and can be executed
fromBASIC with the follow ng statenent:
OPEN 15, 8, 15, "UC: " +CHR$(new i d code) +CHR$(t r k) +CHR$(sec)
CLCSE 15

Data bl ock can then be read from $0300 in drive nenory.

EIE R R kR R I O I R R R I R R S R R R R S I Rk S R O
)

.org $0500 ;code executes in drive here readdbid
sei ;disabl e interrupts

| da $47 ;save current data block id char
sta oldid

| da $203 ;get new id from conmmand buffer
sta new d

| da $204 ;get track for new data block id
sta $06 ;will be read into $0300

| da $205 ;get sector for new data block id
sta $07

| da newi d ;setup new data block id

sta $47

| da #$80 ;read track/sector into $0300

K.J. REVEALED TRILOGY PAGE [143] (C) 1990 K. J.P.B.

sta $00 ;store job code to job queue
cli ;enabl e interrupts

wj | oop

| da $00 ;wait for job to finish

bm wj | oop

ldx oldid ;restore old data bl ock id
stx $47

rts ;and exit

newid .hex 00 ;storage fo? new data block id
oldid .hex 00 ;storage for old data block id

end

22 ERROR - E

You can neke
create a DGCS

RROR PRESENT CHECK

a sinmpler protection check by using DBWRITE to
22 error, and then do nothing nore than check the

drive error channel for the proper error code. The BASI C code woul d
read as foll ows:

10
20
30
40
50
60

REM CHECK FOR 22 ERROR

OPEN 15, 8, 15,"1": REM | NI TI ALI ZE DRI VE

OPEN 2, 8, 2, "#": REM RESERVE BUFFER FOR SECTOR READ
PRI NT#15,"U :2 0 d 00": REM READ TRACK/ SECTOR 1/0
GET#l 5, A$: REM READ ERROR CHANNEL: CLCSE 2: Ol GSE 15

| F A$="2" THEN PRI NT "DATA BLOCK NOT FOUND! ": END: REM

PROTECTI ON PASSED

70
A machi ne-1l a
.or

| da
jsr
| da
| dx
tay
jsr
jsr
| da
| dx
| dy
jsr
| da
| dx
tay
jsr
jsr
jsr
| dx

PRI NT " DATA BLOCK WAS FOUND': REM PROTECTI ON FAI LED

nguage routine to do the same would read as foll ows:

g $c000

#3$00 ;open cnd channe

$f f bd ; SETNAM

#$of

#3$08 ;to drive 8

$f f ba ; SETLFS

$ffco . OPEN

#$0I ; open buffer channe
#<pound

#>pound

$f f bd

#$02

#$08

$f f ba

$ffco

$ffcc ; cl ear channel s CLRCHN
#$of ;output "ul" command

K.J. REVEALED TRILOGY PAGE [144] (C) 1990 K. J.P.B.

jsr $ffc9 ; CHKOUT
| dy #$00

loop Ilda ulcnd,y
jsr $ffd2 ; CHROUT
i ny
cnp #$0d
bne | oop
jsr $ffcc
| dx #$0f ;input error code
jsr $ffc6 ; CHKIN
jsr $ffcf ;CHRIN

sta $fb ;store first error code to 251
jsr $ffcf
sta $fc ;store second error code to 252
loopl jsr $ffcf ;read until you receive a <RETURN> character
cnp #$0d
bne I oopl
jsr $ffe7 ;close all channels ; CLALL
rts
pound byt "#"
ulcnd byt "ul: 2 0 0l 00"
byt $0d

This ML routine can be stored at $CO00 (49152) and called from
BASI C as foll ows.

10 OPENI 5,8, 15,"1": CLOSEl 5

20 SYS49152

30 | F PEEK(251) <>ASC("2") AND PEEK(252) <>ASC("2") THEN PRI NT
" DATA BLOCK NOT FOUND! " 1: END: REM PROTECTI ON PASSED

40 PRI NT "DATA BLOCK WAS FOUND': REM PROTECTI ON FAI LED

< < < Protection Schene # 2 > > >

This protection scheme is guaranteed to defeat ANY non-hardwar e-
assi sted nybbler on the market; including Fast Hack'em and our very
own set of conprehensive nybblers. The physical protection invclves
placing a set of GCR bytes in the tail gap of a sector on disk
Drive menory limitations prevent a software-only nybbler from
copyi ng these bytes, which are | ocated after the end of the GCR
bytes that nmake up the sector on disk. Only extra drive RAM and
software to support it can copy these bytes. To better illustrate
this, let's look at a typical sector on disk

Format a work disk, then load the GCR Editor (GCRKD) fromthe
Hacker's Utility Kit. Wth your work disk in the drive, input 1
fQ@ the track nunber and press <RETURN> twi ce. The GCRED wil |

di splay a sunmary of all the header/data blocks on the track. Both

K.J. REVEALED TRILOGY PAGE [145] (C 1990 K. J.P.B

sides of the screen are showing you the sane information in
different ways. On the right, the (hex) bytes are displayed as they
were before they were witten to the disk. On the left are the
converted (GCR) bytes as they actually appear when readi ng, or
witing to, the track directly.

For every four hex bvtes there are five GCR bytes. G oup Code
Recordi ng ensures that there are never nore than ei ght consecutive
"1" bits or two consecutive "0" bits witten to the disk. This
allows the drive to use ten consecutive "I" bits as a signal that a
header or data block will be read starting with the first "0" bit
read. This is referred to as a sync mark. A normal sync mark is
forty consecutive "1" bits (five hex $FF bytes). This is a

deli berate overkill to nmake the disk format as reliable as
possi bl e.

Usi ng < CURSOR UP/ DOMN >, you can highlight either a header bl ock
whose first byte is GCR $52 or hex $08; or a data bl ock -

GCR $55/ hex $07. Cursor down to the last data block. This is sector
$14 (20) of track 1. Press [SPACE] to read the entire data bl ock
into nmenory. The GCRED will display an editing screen, again with
GCR on the left and hex on the right. Pressing [S] (Side) will mnove
the cursor fromthe left to the right side or visa-versa. W will
onlv be working on the GCR side.

Above the sector data, POS shows you the position in the data

bl ock of your cursor. Use the cursor keys to place the cursor at
position $0144. This is the last byte of the data block. This is
where everv software-onlv nybbler stoos reading the data bl ock. ANY
CCR bytes witten past this point are ignored by the copier. Mny,
MANY protection schenmes depend on this fact when they create their
phvsi cal disk protection. The logical protection involves a custom
drive programto | ook past the end of the data bl ock for the
speci al bytes that have been placed there. A special routine is not
needed to wite the physical protection: the GCCRED is fully capabl e
of such chores

Move the cursor to position $0145. Press [SPACE] to enter EDIT
node and type the foll ow ng:

AA AB AC AD AE 55 55

then press (RETURN) to exit EDIT node, [W to wite the sector back
to disk, and [R] to re-read the nodified sector. Verify that the
bytes $AA - $AE are present at positions $0145 - $0149 (ignore the
two $55 bytes). If not, try entering and witing themagain. W
have just created the physical protection.

The next thing we concern ourselves with is the |ogica

K.J. REVEALED TRILOGY PAGE [146] (C)1990 K. J.P.B.

protection. W need a special drive routine to check for the bytes
that we added to the end of the data bl ock. Below is an assenbl er

listing of such a routine. Wat you do
you could use themas a key to decrypt
operation of your protected program or
endl ess | oop so that the program coul d
sinply place the bytes in drive menory

with the bytes is up to you:
sonme data necessary to the
send the drive into an
proceed no further. W'l
where they can be tested by

your

routi ne.

TGREAD. ASM

This programis for educational and personal use only
No commercial use of this programis permtted.
Al rights reserved (C 1989 X J.P.B

EIE R R kR R R I O I R R R I R R S R R R R S I R Rk S R O
)

*

JOB: Read 5 tail-gap bytes froma given track and sector
The followi ng code nust be witten to

drive menory $0500 and can be executed

fromBASIC with the follow ng statenent:

OPEN 15, 8, 15, "UC: " +CHR$(t r ack) +CHR$(sect or) : CLOSE 15

The tail-gap bytes can then be read from $0300 - $0304 in
drive nenory.

R R I R R I R R I I R I I R R R R R I I R S I R R R R I Rk S O S
)

org $0500 ;code executes in drive here

this routine sets up READTG for execution

set up

: Thi

sei ;disabl e interrupts
| da #$4c ;set up for job queue EXEC conmand
sta $0300 ; (JMP READTQ

| da #readtg

sta $0301

| da #>readtg

sta $0302

Ida $203 ;get track for tail-gap read
sta $06 ;will be read into $0300

lda $204 ;get sector for tail-gap read
;from command buffer.

sta $07

Ida S$EO ;store EXEC cnd to job queue
sta $00

cli ;enable interrupts

wj | oop

I da $00 ;wait for job to finish

bm wj | oop

rts ;exit

s is the actual read routine.

K.J. REVEALED TRILOGY PAGE [147] (C) 1990 K. J.P.B.

readtg
sei

j

sr $f510 :search for the header bl ock of our sect or
1 f not found, this subroutine will exit

;and NOT return to us.

syncl oop
bit $l cOO ; The header bl ock was found so wait
;sync Bark preceding the data bl ock
bpl syncl oop
sl oopl
bit $l cOO ;got a sync, now wait for it to end
bm sl oopl
| da $1cO1l ;throw away the sync inmage
clv
| dx #$01 ;set up .x/.y to count $0145 bytes
| dy #$45 ; ($0000 -$0144) to the end of the data
; bl ock
dat al oop
bvc * ;wait for data byte ready
clv ;clear ready flag
| da $1cOl ;read byte fromdiskette $0144 tines
dey
bne datal cop ;
dex
bpl datal cop ;
dl oopl
bvc * ;we're now at position $0145 -
clv ;in the TAIL GAP
| da $l cd ;read our 5 bytes
sta $0300,y ;and store them from $0300 - $0304
i ny
cpy #$05
bne dl oopl
jsr $fo8f ;turn off drive notor
| da #$01 ; O K
sta $00 ;and exit back to SETUP
cli
rts
end

A sanpl e BASI C program naned "TGREAD' is included on disk that
sends the above code (stored in data statenments) to the drive,
executes it, and displays whether the protection passed or failed.

KRACKER JAX PRESENTS

K.J. REVEALED TRILOGY PAGE [148] (C) 1990 K. J.P.B.

THE HACKER S UTILITY KIT

programed by:

M ke Howard | Joe Peter
Paul Rowe | Jeff Spangenberg
Desi gned by: Les Lawrence
(01987 K. J.P.B.

Wl cone to The Hacker's Utility Kit. This programrepresents the
finest set of disk examnation and nmanipulation tools ever
assenbl ed i nto one package. We are confident you will find it to be
one of the nost useful disks in your library. Each and every nodul e
included in this package has been put through it's paces in rea
use. We feel you'll find themnot only extrenmely powerful, but also
user friendly. Many extras have been put into The Hacker's Utility
Kit. Please be sure to read each segnent of this manual before
using any of the tools. This will insure that you obtain full use
of each and every feature. Before we get on to the goodi es, we want
to thank the prograners |isted above for their efforts in witing
this package. We are very proud to present their finest effort
ever. They, just |like you, are "Hackers" at heart. This programis
a showcase of their real talent.

Loadi ng I nstructions

Place the Utility disk in your disk drive, reverse side up. Type
< LOAD'*",8,1 > and hit RETURN. In a short tinme, the nenu will
appear. Use the cursor U D key to nove the hand-pointer to the
desired feature. Press RETURN and that utility will automatically
load in and self start. We'Il discuss each utility init's order
of display on the nenu.

Sector Usage and Error Scanner

Selecting input 1 fromthe main menu will automatically boot this
utility. When the nenu appears, you nay neke your sel ection using
the cursor or nunber keys to position the arrow pointer. Press
RETURN to activate your choice

1. Scan D sk

Print output after scan (use standard Comrmodore printer).
Begi n scan.

Exit to begi nni ng nmenu.

Modi fy range of tracks to scan. Defaults are 1-38.

ZmMw T

The followi ng characters are used in the scan to represent the
condition of any scanned di skette.

S . Sync track (1 sync, no data).

K.J. REVEALED TRILOGY PAGE [149] (C) 1990 K. J.P.B.

0 : Block header not found.

1 : No sync character found.

2 . Data block not present.

3 : Checksumerrorin data bl ock

7 . Checksumerror in header.

9 : Disk ID msnatch.

- . 1571 nornmal format with no data.
+ : 1541 nornmal format with no data.

Data in these sectors.
2. Directory : Read any diskette in the drive.

3. Quit : Reboot Hacker's Utility Kit main menu.

Density Scanner

Selecting input 2 fromthe main menu will automatically boot this
utility. When the nenu appears, you nay neke your sel ection using
the cursor or nunber keys to position the arrow pointer. Press
RETURN to activate your choice

1. Scan Di sk
P: Print output after scan (use standard Conmodore printer).
S : Begin scan.
E: Exit to beginning nmenu.
N: Mdify range of tracks to scan. Defaults are tracks 1-38.

The followi ng represents the values you can expect on a normal
di sk. Any deviation represents a non standard condition. (Mre than
one scan nay be needed to deternine density on sonme di skettes.)

Tracks 1-17.
Tracks 18- 24.
Tracks 25-30.
Tracks 31-35.

A WONPF

2. Directory : Read any diskette in the drive.

3. Quit : Reboot Hacker's Utility Kit main menu.

KRACKER HACKER GCR EDI TOR

The GCR Editor is the nobst powerful tool you'll ever use to exam ne
a disk. It will allowyou to viewraw data the way it was
originally witten to the disk. Qur GCR Editor has every feature we
could think of to examine and nani pul ate headers and data. A

t hor ough know edge of the makeup of Conmodore format is necessary
to have full use of this utility. For conplete information on this
subj ect, we suggest "Inside Conmpbdore DOS", witten by Richard

K.J. REVEALED TRILOGY PAGE [150] (C)1990 K.J.P.B.

I mers. This nmanual contains a wealth of information on the nakeup
of the Commodore format and the Disk Operating System (DOS). Wth
this manual and our GCR Editor, you can achi eve a new | evel of
under st andi ng.

In the following instructions, we will give you all the conmand
features available to you with the Kracker Hacker GCR Editor. Only
use and study can nmake you proficient. Enjoy!

What is GCR?

Wien you | oad and save files fromthe C-64 to disk, they are not
witten bit for bit straight to the diskette. The Commbdore 1541/71
di sk drive cannot wite nore than three "0" bits in arowto a

di sk, so witing a hex byte |like #$06 poses a problem Conmmodore
devel opers created the GCR coding schene to read and wite data to
and fromthe drive. It converts each four bits of hex code into 5
bits of GCR code. For every four bytes of hex data, there are five
CCR bytes. Lastly, this data is witten at a standard rate,
depending on its placenent on the diskette. Standard Bit Rates are
as follows: Tracks 1-17 = $60, Tracks 18-24 = $40, Tracks 25-30 =
$20, Tracks 31-35 = $00.

Commodore DOS protection is, for the nost part, sinply the
pl acement of NON- STANDARD data on the diskette. This can be created
by using single bytes in non-standard | ocations, abnornal drive
speeds, or rewiting the format (single sectors, tracks, or the
entire disk). By using your GCR Editor, you can obtain exact format
i nformati on. You even have the power to duplicate many protection
schenes on non-worki ng backups. Let's go through the commands
available to you in this powerful utility. Fromthe main start-up
menu, choose option 3 and press RETURN.

First Screen (Header Sel ection)

Track Sel ection: Track values are entered in deciml. Values from
1-40.5 are accepted.

Bit Rate Sel ection: Press RETURN for default val ue, otherw se enter
one of four bit rates ($00, $20, $40, $60) .

After Scan of Track: The nunber of headers equal s the nunber of
syncs on a track. Left colum = GCR of first 8 bytes. The right
columm = converted GCR bytes. The nessage bar just above the |ist
of headers gives you informati on about the current header the
cursor is on. Left hand will say: Sector: xx if the current header
is part of a standard formatted track. It will give you the sector
nunmber in decimal so you can use the GCR Editor |ike a sector
editor. The right hand will either say DATA or HEADER, dependi ng
upon whet her the cursor is on the data bl ock header (starts with a

K.J. REVEALED TRILOGY PAGE [151] (C) 1990 K.J.P.B.

$52) or the actual data block itself (starts with a $55).
Commands (First Screen):

Shifted HW Hel p screens.
T. Enter a new track.
R Enter a new bit rate for the current track.
FI: Directory of disk in drive.
F3: Pronpt to reboot nmin nmenu.
Cursor UD: Scroll through headers.
Space Bar: Read current selected header and go to edit (2nd)

screen.
P. Print Ilist of headers to printer (Standard
Commodore printers).
+ or -: Go back or forwards one track and read.

C. Create a Track : You nay access this feature after
readi ng a track.

options | ncl ude:

1. Fill track with no-sync: w pes out entire track with $55s.

Fill track with full-sync: fills entire track with $FFs.

3. Create Notepad header: Wpes out an entire track with $55s,
and then creates a one header/one sync track usi ng Notepad
code.

N

Second Screen (Header Edit Screen)

Header Info: Appears at the top of the screen. Sync is the actua

I ength of the sync mark of this header. Length is the length in
bytes of the header. Note: if the header has nore than $0500 bytes,
the buffer for editing will only go up to byte $O4FF, since the

di sk drive cannot read | ong bl ocks unl ess you have expanded menory.

Header and Data Tabl es: Rows of ten GCR bytes appear on the |eft.
The converted ei ght hex bytes appear on the right. Renenber, five
CCR bytes equal 4 Hex bytes.

Commands (Second Screen)

Reread the header data.
Wite altered data back to disk.
Find zero GCR bytes and nmark t hem
Print out data to printer.
SPACE BAR Enter edit nopde.(See nore info bel ow)
+ or -: Increnment or decrenent sync | ength by one.

CURSOR UD/ RL: Move cursor around data table.

< . Delete one byte from cursor spot.

> : Insert one byte ($00) at cursor spot.

DEL: Delete bytes (fromend of table)

INZX

K.J. REVEALED TRILOGY PAGE [152] (C) 1990 K.J.P.B.

S: Switch colum editing fromleft to right.
A Toggl e Hex display Hex and ASCI| (right hand of
screen).
D: Enter disassenble node. (See nore info bel ow)
C. Repairs checksum of header or data bl ock. Use before
W command to prevent checksum error.
SH FTED R. Lets you re-read current header at a different clock
rate than the entire track was read at.
SHI FTED H: Hel p screens.
LEFT ARROWN Return to first screen.

Edit Mbde: Hit SPACE BAR to enter, border will change color. Type
in hex bytes, or ASCI|, whichever is appropriate. DEL key will
backup cursor. Hit RETURN to exit edit node. Note: On the display

screen, double dots Il |l mark bytes that aren't used. If you try
to hit SPACE BAR to enter the edit node on one of these bytes, it
won't work (except, on the first ".." to the right of the last data

byte di splayed). Hitting SPACE BAR here allows you to append to the
current data, the length of the header will change appropriately.

Di sassenbly Mbde: Hit D to enter Disassenbly node. The di sassenbl ed
code will appear in the GCR colum on the left. Type in assenbly
text and hit RETURN to enter. Ht CURSOR UD to escape Assenbly
node.

SPACE BAR Enter disassenbly node.
CURSOR U D: Scroll back and forth through the disassenbly.
RETURN: Exit di sassenbly node.
P. Send di sassenbl ed code to printer.

Not eDad Feature: At times when using the OCR Editor, you may want
to save a header, |ook at another one, and later retrieve the
original header without re-reading it. Qur GCR Editor features a
scratch pad (called the Notepad) that |ets you save one header in
menory. You can al so edit the notepad header.

T. Toggles editing node from current header to notepad.

The border will change col ors and the nessage
"NOTEPAD' will appear in the top left corner.
You can't use any disk conmands like RW& Z in
Not epad nbde. Hit T to return to normal header
pr ogram

SHI FTED S: Save header to disk as a Notepad file. Save either
not epad or sel ected header.

SHI FTED L: Load saved header from di sk.

UP ARROW Saves current header to Notepad.

CONTRCL |: Only works in the non-Notepad node in GCR editing.
I nserts NOTEPAD header code at cursor position. Use
to retrieve Notepad.

CONTROL A: Appends notepad header to disk at cursor spot. If

K.J. REVEALED TRILOGY PAGE [153) (01990 K.J.P.B.

you have a long data block with extra roomat the
end, and you wish to add an extra sync to disk, nove
the cursor to the end of block, have the desired new
header saved to the Notepad, and hit CONTROL A. The
CCR Editor will automatically re-scan the track.

CCR Editor Hints, Tricks & Tips

Use caution when using the Wcomuand repeatedly. The GCR Editor
wites each header back to the disk as perfectly as possible (ie:
correct length, correct sync). If you nake a header |onger than it
was before and wite it back to the disk, it may destroy the header
that follows it.

The sanme goes for the CONTROL A append command. Changi ng sync
I engths and writing the header back to the disk is al so dangerous.
Use cauti on.

After you use the Wconmand, you should verify that it wote
correctly by using the R command to re-read it.

Use the C checksum conmand after editing a data bl ock before you
wite it back to disk. This repairs the data bl ock checksum

O herwi se, normal Conmodore DOS will get a 23 read error when it
tries to read the bl ock.

Well, there you have it. The nost powerful, easiest to use GCR
Editor on the market today. If you feel confused or overwhel ned,
don't be put off. Alittle study and practice will have you feeling
right at hone.

Nybbl e Copi er

Selecting input 5 fromthe main menu will automatically boot this
feature. This utility has been designed to copy non standard
material. It will in many cases, nake a perfect copy of your
protected diskette. Please keep in mind as you use this, or any
nybbler, that nybblers are Ilimted in their abilities. The
followi ng key strokes represent the user options.

FI/F2 . Increnent or decrenent starting track of copy range.

F3/F4 : Increnment or decrenment ending track of copy range.

F5/F6 : Increnent or decrenent Source device nunber (nust be
har dwi r ed) .

F7/F8 . Increnent or decrenent Destination device nunber (nust

be hardwi red).
SID: Directory of diskette in source or destination drive.
Q: Quit.

C . Begin copy process.

K.J. REVEALED TRILOGY PAGE [154] (C) 1990 K.J.P.B.

File Track & Sector

Li nker ~Tr acer

At the "Filenane" pronpt, enter the file you wish to see |inked.
Press RETURN and the drive will search for that file. If the file
is found on the disk, it wll be visually linked on the
Track/ Sector map. After the file has been read in, a blinking

cursor wll

appear on the beginning Track/ Sector of that file along

with the address of the first two bytes of that Sector.

1st Screen Conmands:

Fl

F3 :
RESTORE :

Cur sor

Cursor Up :

Cur sor
Cur sor

Ri ght
Left

HOVE

Space Bar

Notice that as you use the Cursor comands,

Down :

Directory of Diskette.

Pronpt to reboot nain nenu.

Resets program and drive at any time except
during Iinking.

Move forward link by Iink through file (slow
scan).

Move backwards link by link (slow scan).
Move forward eight |inks (fast scan).

Move backwards eight Iinks (fast scan).
Return Cursor back to first |ink.

Enter 2nd Screen (edit node).

t he address counter is

increnented to reflect the true address of first two bytes of the

hi ghl i ght ed Sect or.

2nd Screen Commands:

Left Arrow :
W
M :

Return to first screen

Wite altered Sector to disk

Toggl e edit node between Di sassenbly and
Hex/ ASCI | di spl ay.

Di sassenbly Mbde Commands:

Home : Honme Cursor back to first byte.
Cursor UD: Slow scroll through disassenbly.
Cursor L/R: Fast scroll through disassenbly.

Space : Enter edit node. Type in assenbly menoni cs. Be
sure to use proper spacing. Ht RETURN after
each change. A bad instruction will exit edit
node.

Hex ASCI| Mode Conmands:
Home : Honme Cursor back to first byte.
Cursor RIL/UD : Mve cursor around display.
Type in a Hex Byte at blinking Cursor to change val ues. The ASCI

display wll

change accordi ngly. Renenber, al

2nd screen commands

al so apply to this screen.

K. J.

REVEALED TRI LOGY

PAGE [155] (C) 1990 K. J.P.B.

Byte Pattern Finder

At the beginning pronpt you nmay enter the bytes you are trying to

| oacte in any of three fornms (one at a tine please). Hex, Decinal,

or ASCI1 will be acceptable. You are linted to two |lines of input.
An incorrect input will not be accepted.

Enter Hex data as : $BD, $53, $22 (Notice the "$" and the ","
pl acenents.)

Enter Decinmal data as : 200, 255,36 (Notice the "," placenents.)
Enter ASCI| data as : "welconme to " (Notice the quotes around
the string.)

Conmbi nation of the above as : "welcone to ", $8D, $53, $22, 200
, 255,36 (Notice the conmas)

At the next pronpt, choose the range of tracks (1-35 only) you w sh
to search. Hit RETURN to begin scan. The drive will then begin a
fast search for the inputed data. Each tinme the data is found on
the di sk, the searcher will pause and report the occurrence. Press
Space Bar to Continue the search, or RESTORE to return to the

begi nning nenu and reset the drive.

O her Commands (while Cursor is blinking) are:
FI : Directory of disk in drive.

F3 : Pronpt to reboot Hacker's Utility Kit main nenu.
Kracker Jax Para. eter~Copier Creator

Selecting input 8 fromthe main nmenu will automatically boot this
feature. This utility will give you the ability to easily create a
paraneter, and incorporate that paraneter into a copier utility.
Fromthe main menu, you will be presented a nunber of conmmands. The
foll owi ng keys represent your main input keys.

FI: Directory of diskette in drive.
F3: Reboot Hacker's Utility Kit main menu.
F5: Fast Format a work disk. WIIl ask for disk name and ID

numnber .
1. Paraneter Nane : Enter the paraneter title (also used as it's
file nane).
2: Starting Track : Increment only. (Use default value of 1 in
nost cases.)
3: Ending Track : Increnent only. (Use default value of 35 in

nost cases.)

4. Type of copier : Toggle between Data copier or Nybbler. W
reconmend the data copier in nost cases. Qccasionally only a
Nybbl er will do.

5: Enter Data : Data nmay be entered in Hex or Decinal.

Toggl e node with left arrow key. Inportant : Data MJST be

K.J. REVEALED TRILOGY PAGE [156] (C) 1990 K.J.P.B.

entered as follows. Starting at position zero in the buffer
enter the Track. Position one, enter the sector to nodify.
Position two, enter the nunber of bytes you wll be
nmodi fying. Position three, input the starting position of

that change in the sector to be nodified. The bytes from four
on represent the actual byte changes. After the byte changes
have been inputed, you have three situations. NUVBER ONE

Anot her change in the sane sector. In this case, enter

one zero byte and nunber of bytes, position, and actua
changes again. NUMBER TWO : Anot her change on disk. Enter two
zero bytes and then enter all new infornmation just as you did
in the begi nning. Renmenber,just continue on with your changes.
Don't start over at position zero. NUMBER THREE Done. |f all
nodi fications are entered, enter three zero bytes. This will flag
the utility that you are finished

Press RETURN to |lock in all changes.

S: Save copier/paraneter to formatted work di sk. Your
nmodi fications will be automatically executed after the
created copier has been used. The created copier will contain
the proper title, tracking information, and byte
nodi fications. The user nmay sinply load and run the copier
It will allow the use of either one or two drives.

Kracker-Non with Rel ocater and Op- Code Editor

From the main menu choose option 9 to access this utility. Wen the
nmoni t or menu screen comes up, use the cursor U D keys or the
1,2,3,4, keys to choose an option. Press RETURN to execute that
option.

Kracker-Mon is conpletely relocatable in nmenory The = and - keys
will increnment and decrenent the nonitor address. Hitting the
RETURN key while the "Monitor=$X000'" is highlighted will also
increnment the nonitor to the desired Hex address.

FI : Directory of disk in drive.
F3 : Pronpt to re-boot the Hacker's Utility Kit nmain nmenu.
OPTION 1 : Execute chosen nonitor. (See Mnitor Comands).
OPTION 2 : Save chosen nmonitor to a work disk
Saves autoboot file under name : "MONX0O00" . Just
LOAD " MONX000", 8,1 to autoboot other save files. The
op-codes listings will be saved as "OPS". The nonitor
will be saved as " XO'
OPTION 3 : Edit the op-code file (OPS) on any WORK DI SK
CURSOR U D : Slow scroll through list.
CURSOR R/'L : Fast scroll through Iist.
RESTORE : Reset to previous nenu.
SPACE : Allows you to change the mmenonic.
A . Steps through the addressing nodes (changes

t hem .

K.J. REVEALED TRILOGY PAGE [157] (C) 1990 K.J.P.B.

HONE :
S :

Returns cursor to beginning ($00 byte).
Re- saves changed opcode file to a WORK DI SK

KRACKER- MON COMVANDS

= XOX

@:

SPACE

RUN/ STOP :

K. J.

L

TC

TD :

TF

Di spl ays status of A X,Y registers and Stack pointer
XXXX - Executes code starting at $XXXX

Returns user to Basic

FFFF LLLL - Displays in hex, menory between 2 two
addresses. |f a second address isn't specified, scrolls
forever. RUN STOP halts.

Sends di sk conmand. Al one returns drive status. ~$ for
directory of disk.

during directory pauses.

abort directory listing.

Load file from disk

L"FI LENAVE" |, devi ce# , address (optional). For exanple-
L "FILE",08,CO00 (I F an address is given, it WLL |oad
to that address.)

Verify file in menory.

V' FI LENAME" , devi ce, address(optional). Sane as Load
command but Verify instead. A "?" stands for verify
error.

Save File - S "FILENAME", devi ce, FFFF, LLLL+

Exanpl e S "FI LENAME", 08, COOO, DOd

FFFF LLLL xx - Fills menory from $FFFF to $LLLL with
$XX byt e.

FFFF LLLL ($LLLL Optional) - Disassenbles nenory. Use
CURSOR U D to scroll through listing. Editing is
possi bl e usi ng nmenoni ¢ changes.

Send code to printer - PD FFFF LLLL sends disassenbly
listing.

PM FFFF LLLL sends HEX Menmory |isting.

(Commodore 1525 conpati bl e only)

XXXX menoni ¢ comrands - Assenbl e code begi nning at
$XXXX (Be sure to use proper spaci ng between
characters.)

FFFF LLLL PATTERN - Hunts from $FFFF to $LLLL for up
to an eight byte pattern. Use quotes on either side of
an ASCI| pattern. ASCII and Hex may be mi xed

FFFF LLLL XxXX - Transfers menory from $FFFF t hr ough
$LLLL to $XXXX

Use same syntax as T command. WII transfer conputer
menory to drive.

Use same syntax as T comand. WII transfer drive
menory to the conputer.

Same syntax as T comand. Fast conmand version of TC
Var ni ng: $XXXX can't be between $0001 and $0147.

This is the letter 0 not a zero. 0 followed by an 8,9,
A B (device nunber) will put you in the drive-nmon node
for the specified drive. The above conmands are the
sane for the

REVEALED TRILOGY PAGE [158] (C) 1990 K.J.P.B.

drive-non except the P feature is inactive. For printer |istings
of drive nenory, send the code to the conputer, then the
printer. 0 and RETURN sends you back to the conputer nmenory. A
"1" lets you know you're in drive nenory, while a "." denotes
conmputer nenory. To assenbl e/ di sassenbl e beneath ROVE and the
VIC CH P, change | ocation $0002 as if it were $0001. $0001 can't
be changed through the nonitor.

$0002: $37 = All ROVB in.

$36 = Bank out BASI C. ($A000 $BFFF)

$35 = Bank out Kernal & BASIC.

$30 = Bank in RAM under $DOOO.

$31 = Bank in character ROM under $DOOO

Single Track or Whole Disk Formatter
Sel ecting input 10 fromthe main menu will automatically boot this
feature. This utility has been designed to allow you to fast fornat
either a single track (perfect for creating 29 Errors) or the whole
di sk. When the nmenu appears, you nay sel ect an option by using the
cursor or number keys to nove the arrow pointer. Use the RETURN key
to activate your selection. The followi ng keystrokes represent your
options.

1. Format one track.

FI/F2 : Increment or decrenment to proper track.
F : You will be pronpted for a two character |D nunber.

Formatting will follow

R : Return to fornat nenu.
Restore : Return to nmenu at any input pause.

2. Standard Fornat.
You will be pronpted for new nane and | D nunber. Five
characters are accepted. The last two characters will becone
the true disk I D Numbers.
3. Directory diskette in drive.
4. Exit back to Hacker's Utility Kit main menu.
Di sk File L~ger
At the "Log Wiich Files?" pronpt, either press RETURN to accept the
"*" default (which will log all files) or enter an individual
filename to log that file.

Exanpl es:

Log Wiich Files? : *

log all files
Log Wiich Files? : B* = log all file starting with "B"

K.J. REVEALED TRILOGY PAGE [159] (C) 1990 K.J.P.B.

Log Wiich Files? : DISK = log file called DI SK

At the next pronpt, "Do you want a printout?", press RETURN to
accept the default value of "NO'. Hit the "Y' key to send output to
the printer (Conmmodore conpatible) as well as the screen. The

logger will mark files as "Bad" if they have illegal Track or
Sector numbers. You can assune these are either dummy files or
files that are mani pul ated by special DOS routines. As a disk is

| ogged, the disk nanme and ID nunber will appear at the top of the
screen. Below, a list of each filename will be displayed with their
start and endi ng addresses in Hex.

O her Conmands:

FI : Directory disk in drive.
F3 : Reboot pronpt to return to main nenu
RESTORE : Reset the program and the drive back to beginning
RUN STOP : Pause key - active only while | ogging.
SPACE : Continue after pause.

K.J. REVEALED TRILOGY PAGE [160] (C) 1990 K.J.P.B.

HESMON | NSTRUCTI ONS
If You've Never Used a 'Machi ne Language Monitor' Before

The following section is intended for people who are unfaniliar wth
the uses of a nachine | anguage (ML.) nonitor program However, It is
not a tutorial in the architecture of the C64 or the 6502. Nor is it

i ntended to teach 6502 assenbly | anguage progranm ng. In fact, some
know edge of assenbler |anguage will be nost helpful. It is intended
to hel p the beginner get started in using HESMON. Even those who know
not hi ng about the 6502 or the C64 will find some of HESMON s conmands
useful (see, for exanple, the Interpret Menory conmand).

If you are fanmiliar with the C64's screen editor, you should have no
trouble entering and editi ng HESMON conmmands. HESMON conmmands are
entered and edited just as are BASIC direct node conmands. They

consi st of a single character usually followd by one or nore
"paranmeters' and a RETURN. The paraneters consist of hexadeci mal
nunbers or character strings and are separated from one another by
spaces. Wth one exception (the 'U conmand) nuneric paraneters nust
be hexadeci mal and do not need to be prefixed with '$' . String
paraneters are identified by enclosing themin double quotes ("). If
HESMON doesn't understand a command it will print'? , usually just to
the right of the bad comrand. If the comrand is understood, but the
result is inpossible or illegal, e.g., trying to save HESMON itself on
tape, HESMON prints a'?' on the follow ng |ine.

To use HESMON, turn your C64 off, insert the HESMON cartrtdge into the
expansion slot In the C64 and then turn the power on. You will see the
HESMON ver si on nunber, the progranmars nane, the H. ES. copyri ght
message, and the 'cold start' register display:

C

PC ITRQ SR AC XR YR SP
0000 EA31 27 On 00 00 FA

The meaning of this rather cryptic display is as follows: The first
line 'C" identifies a cold start of HESMON, that is, starting up from
power-on. The next line identities the pseudo 6502 registers

mai nt ai ned by HESMON:

PC = program counter

IRQ = interrupt request vector
SR = Status register

AC = accunul at or

XR = X register

YR = Y register

SP = stack pointer

NOTE: "6502" is used synononmously for "6510" in this docunent.

K.J. REVEALED TRILOGY PAGE [161] (C) 1990 K.J.P.B.

The register contents are shown on the third line. The quantities
shown in the register display (except the |RQ are not the actual

regi ster contents, they are the numbers HESMON will use to set the
6502 registers when instructed to begin execution of a ML. program
IRQis not a 6502 register, but a RAM'vector' that points to an | RQ
interrupt service routine. Beginners nmay ignore this location - but
better not change it! The ';"at the beginning of the last line is
really a HESMON conmand. It tells HESMON (it the RETURN key is pressed
with the cursor on this line) to put the seven nunbers that follow
into the correspondi ng pseudo regi sters. Just before begi nning
execution of a ML. program HESMON copi es the pseudo regi ster contents
to the 6502 registers. so, for exanple, If we want the C64 to print
"H.', we could first nove the cursor up to the';' line and alter it
to read:

1200 EA31 27 48 49 2E FA

Wien we press RETURN, the 6502 pseudo program counter is set to $1200,
while the accunul ator, and X and Y pseudo registers are set to $48
(ASCIl H), $49 (ASCIl 1), and $2E (ASCII). Now, if we wite a program
at $1200 to print the AC, XA, and YR it will print "H.' when we
execute the HESMON Go command. Let's wite such a program using the
HESMON Si npl e Assenbl er command, 'A . Type In the followi ng |ines:

A 1200 JSR FFO02
TXA

JSR FF02

TYA

JSR FF02

BRK

The ' A" beginning the first line tells HESMON we wi sh to assenbl e,

that is, translate assenbly menonics into machi ne code. As you press
RETURN after typing each of the above lines, you will see HESMON
reprint the Iine, showi ng the machi ne code generated fromthe assenbly
| anguage instruction. HESMON wi || then pronpt for the next Iine of
program by printing the "A command and the next avail abl e address

fol |l owed by

K.J. REVEALED TRILOGY PAGE [162] (C) 1990 K.J.P.B.

a space. So you don't have to keep track of what the next address is,
just type in the assentty | anguage instructions. Wen you've finished
the program just press RETURN and HESMON wi Il exit this node. By the
way, $FFD2 is one of the 'Kernel'routines in the C64's ROVs. It prints
the contents of the accunulator to the current output tile the screen
in this case. For further information on this and other useful ROM
routines, consult the Comrmobdore 64 Programrers' Reterence Guide"
publ i shed by Conmodor e.

Now type 'G and hit RETURN. You should see:
G

Hi .

B*

PC IRO SR AC XR YR SP

; 120C EA31 30 2E 49 2E FA

Notice after the "H' is another register display, the break entry
display identified by 'B* . This neans we've reenterad HESMON by ex-
ecuting a BRK instruction the one at the end of our short program
Now exam ne the register contents. The PC points one address higher
than the BRK instruction. The X and Y registers and stack pointer are
unchanged. The accunul ator now has the $2E transferred into it by the
TYA instructional $1201. Let's play with this a bit. Type 'D1200 120B
This command instructs HESMON to ' disassenble' the program you just
entered.

Now, nove the cursor to the last line, at address $1208, and type the

following, with the '"A" replacing the ',' (also be sure to blank out
any characters left on the screen after the '8")

A 1208 LDA #48
JMP 1200

W now have a M L. programthat will print "H.' forever - or until we
stop it. Type 'GL200'. Wen you tire of watching the stream of

"H.H .H.'s, press - no, not the STOP key - the RESTORE key by
itself. The RESTORE key is HESMON s super-STOP key. It will halt just
about any M L. program (except HESMON itself when HESMON i s pl ugged
in. (Exception: It you attenpt to use RS232 files all bets are off.

Al so, correct operation of RS232 files is not guaranteed wi th HESMON
installed.) To get back to our exanple: alter pressing RESTORE you
shoul d see a clear screen with the follow ng:

S*
PC I RQ SR AC XR YR SP
; XXX EA31 XX XX XX XX XX

This is the RESTORE entry display, identified by the 'S*'. The X' s are
not actually what you will see. The register contents will depend upon
exactly when you pressed RESTORE
It you want to enters series of bytes into nenory, use the Menory
Modi fy command (:). For exanple, to enter the sequence $01, $02, $03,
$04, $05, $08, $07... starting at $1234, you type:

: 12340102030405060708

K.J. REVEALED TRILOGY PAGE [163] (C) 1990 K.J.P.B.

HESMON wi || respond by reprinting the line and will pronpt for another
line by printing the next avail able address. As with the Assenbl e
command, you nmay exit by typing RETURN. Besides entering progranms and
data into nmenory, one of the functions of a ML. nonitor is to exam ne
prograns and data already in nmenory. HESMON has several comands for
this purpose, including D sassenbly (D), Menory Display (M, and
Interpret Menory (I). These three commands are special in that the
cursor-up and cursor-down key nay be used to 'scroll' their displays
forward and backward through nenory. The action of this scrolling is
easier to use than to describe. Think of the text on the screen as
being on a drum which may be rolled up or down using the cursor

up/ down key. The scrollable display type found closest to the edge of
the screen where new lines will appear is continued in the scrol
direction. | said it was hard to describe. Try it. Just type 'D AAD7'
and hit RETURN. Then press and hold the cursor-down key. To scroll up
go to the top of the screen and then hold down the cursor-up key.

O her commands allow you to hunt for a particular Sequence of bytes in
menory (H), conpare two bl ocks of menory for differences (C), or
transfer a block of nmenory to a different location (1). There are al so
two advanced functions: N-relocate absolute nenory references in a
program and E- change the external references in a program Finally,
there are nunmber base conversion and hexadeci mal arithnetic functions.

Al phabetical List and Description of HESMON Commands

The followi ng section lists the HESMON conmands in al phabetical order
describing each in detail and giving exanple(s) of its usage.

A - The Sinple Assenbl er The HESMON si npl e assenbl er provi des en easy
way to enter Short ML. programs. It does not have all the features
found in a conplete assenbler such as HESBAL in HES' s 6502

Prof essi onal Devel opnent System for the VIC and Commodore64, but it
provi des increased conveni ence conpared to POKEi ng from BASIC or

ent eri ng hexadeci nal codes using a nore primtive nmonitor. The syntax
of HESMON s Assenbl er command is as foll ows:

A 1111 MvM 00000

where '1111' is a four digit hexadeci nal address in the C64's RAM
"MW is a standard three character assenbler mmenonic for a ML.
operation code (opcode), such as JSR, LDA, etc. '00000' is the
"operand' of the op-code. It's beyond our scope here to discuss fully
t he nmeani ng of those parameters - for a conplete discussion, consult a
book on 6502 assenbly | anguage progranm ng. See Section | for a sinple
exanpl e of A's usage. Notice that since all nuneric operands MJST be

i n hexadeci mal notation the customary "$" precedi ng these nunbers is
Optional- as is the preceding 'X or 'Y in indexed instruction
operands. |f HESMON understands the line, if will reprint it show ng
the correspondi ng byte(s) of ML. between the address arid tire
assenbly code. HESMON wi || then pronpt for the next line of assenbly
code by displaying the next address followed by a space and the input
cursor. |If HESMON cannot interpret the line, It will print "?" instead
of pronpting for the next line. For exanple, you type:

A 1200 LDA#41

K.J. REVEALED TRILOGY PAGE [164] (C) 1990 K.J.P.B.

HESMON r esponds by overprinting your line and then pronpting for the
next line as follows:

A 1200 A9 41 LDA#$41
A 1202

Note - HESMON i gnores anything to the right of a':' on the line.
B - Breakpoint Set

There are three different nmethods to return to HESMON froma ML prog-
gram The Breakpoint Set conmand is one of them This command all ows
you to designate an address in a programas a 'breakpoint,' that is, a
pl ace where the programis to be halted and control is to be returned
to HESMON. Breakpoint Set also allows you to specify the nunmber of
times the instruction at this addresS is to be executed before the
breakpoint is activated. The breakpoint defined with Breakpoint Set is
ef fective ONLY when the C64 is executing HESMON s Qui ck Trace conmand.
For exanple, to halt a program first starts at address $1200, on the
fifth repetition of the instruction at address $1234, you woul d type:

B 1234 0005
Q 1200

The first |ine above sets the breakpoint at $1234 and the repeat count
to five. The second line initiates the Quick Trace node of program
execution (see the Quick Trace command). Wen address $1234 has been
reached for the fifth time HESMON will halt execution of the program
di splay the current values of the 6502 registers, and enter the

singl e-step node of execution (see the Wal k conmand).

The second method to return to HESMON froman M. programis to insert
a 6502 'BRK' instruction into the program Obviously, since this

met hod requires prograrn nodification, it may be used only with
prograns in RAM Finally, HESMON nay be called by sinply pressing the
RESTORE key. In either of these last two cases HESMON wi Il be
re-entered whether or not the Quick Trace nbde was active. If a BRK

i nstructi on was encountered, the 'break' entry register display wll
be printed showing the contents of the 6502 registers. Simlarly, if
the RESTORE key is pressed, the RESTORE entry register registry is
shown in the latter case, the screen is cleared first. The RESTORE key
nmet hod of HESMON re-entry will work any time the HESMON cartridge is
plugged in - unless an RS232 file has been accessed or the 6502
attenpted to execute an undefined opcode (one that disassenbles as
'???'). After an RS232 file has been attenpted HESMON nay be
re-entered fromBASIC via a BRK instruction. Type 'SYS8' to cause a
break entry.

K.J. REVEALED TRILOGY PAGE [165] (0) 1990 K. J.P.B

C - Conpare Menory Bl ocks

This command conpares two sections of nmenory and reports any
differences by printing the address of one nmenber of the m smatched
pair(s). The syntax is as follows:

C 1111 2222 3333

where 1111 is the start address of the first section, 2222 is the end
address of the first section, and 3333 is the start address of the
second section the one to be conpared with the first sectton. This
command nmay be stopped (in case a |arge nunber of addresses are
printed) with the STOP key. For exanple, suppose you have two disk
files containing (you thought) the sane M L. programresiding at

| ocati ons $1400 to $147F. However, when you used the BASI C comand
VERI FY, it said 'VERIFY ERROR . Naturally, you wonder just where the
difference is. VERIFY can only tell you they differ SOVEWHERE. Conpare
Menory Bl ocks may be used to find out: First use HESMON s Load conmmand
to load one of the files (See Load). Then nobve thit programto $1500
usi ng the HESMON Transfer Menory Bl ock command: T 1400 141F 1500. Next
Load the other file. Now conpare the two files using Conpare Menory

Bl ock:

C 1400 147F 1500

HESMON wi Il print a list of all the nenory |ocations which differ
bet ween the two prograns.

D - Disassenbl e Menory

This command is the inverse of the Assenble command. It interprets
nmenory contents as M L. instructions and di splays the assenbly

| anguage equi val ent. Disassenble is used in two distinct ways. First,
it my be used to disassenble a section of nenmory by specifying an
address range, such as:

D 1111 2222

where 1111 is the start address and 2222 is the end. This type of dis-
assenbly is conveni ent when used in conjunction with HESMON s Qut put
Di vert command to produce a hardcopy listing of a ML. program
Second, the disassenble conmand nmay be started by entering a single
paraneter, the begi nning address:

D 1111

This node is handy for exanmining a ML. programon the screen because,
once the first line is displayed, preceding or subsequent |ines of
code nmay be di sassenbi ed by pressing the cursor-up or cursor-down key
respectively.

You may alter a programin RAM using the Disassenbl e conmand' s out put.
If you nmove the cursor to the line you wish to alter, change the byte
di splay (not the menonic), and press return, HESMON will atler the
enory contents and retype the line showing the altered bytes and the
correspondi ng di sassenbly. Then HESMON wi || pronpt for the next |ine
by printing the next address and | eaving the input cursor on the sane
line. To exit this node type RETURN, just as with the Sinple Assenbler
conmand.
K. J. REVEALED TRI LOGY PAGE [166] (O 1990 K. J.P.B.

E - External Relinker

This command is rather difficult to understand, but the effort is
worth it! Basically, this command facilitates the transport of ML
prograns from one 8502-based conputer to another (PET, VIC, etc.) by
translating the systemcalls of one conputer to those of another. O
course the capabilities of these conputers are different so one cannot
al ways achi eve a perfect translation, but at least a functioning
versi on can be nade w thout conpletely rewiting the program The
heart of this command is a table of correspondi ng addresses. This
tabl e contains four-byte entries consisting of pairs of addresses.
These address pairs are the addresses in the respective conputer
operating Systens that performa given task. Typically these will be
addresses in the ROMfirmwvare of the conputers. The correspondence
tabl e nust be Supplied by you. Lists of common ROM routine addresses
in various 6502 conputers have appeared in several places, nost
notably in COWUTE! nmgazine (e.g., "VIC Menory Map Above Page Zero"
COWPUTE! Vol .4, No.1, P.181); "Butterfield on Comobdore", Commodore
Magazi ne, Cct., Nov., 1982, pp. 81 ff.; and, for the PET, in "PET/ CBM
Per sonal Conputer Cuide" by Gsborne and Donahue.

For exanpl e, suppose you have | oaded into your C64 an M L. program
intended to run in a PET with BASIC 4.0 ROVs. W will assune it is in
| ocations $1200 to $i 3FF. Many of its external subroutine calls are
probably of the form JSR $FFxx. The subroutines at these addresses are
all alnost identical in function to those of the sane address in the
C64 because these entry points are in a 'junp table' set up for the
pur pose of standardizing Systemcalls between the different Commodore
ROM Sets. So what's the

probl en? Any subroutine call in the address range $B000 to $FFQCO
probably al so has an equivalent In the VIC, but it's at a different
address. This is where External Relinker cones in. External Relinker
will find such subrouttne calls end replace themwith the
corresponding C64 ROMroutine calls - if we can identify the correct
repl acenent (this is where the published ROM maps cone in). If we

al ready have a correspondence table constructed in an earlier session
with External Relinker, we sinply load it using the |oad comrand. But,
if we don't have a table, External Relinker will use our answers to
its queries to construct one we nmay have for future use. For the
present exanple, suppose we have no table, just two ROM maps. W want
to construct a table starting at $1000, so we start it by entering
four zeroes (four zeroes denote the last entry in the table) using the
Fill Mernory Bl ock conmand.

F 1000 1003 00

Then we start External Relinker:
E 1200 13FF 1000 BOOO FFOO

The first two paraneters tell External Relinker where the start and
end of the programwe are working on are. The third says where the
correspondence table starts. The last two give the address range we're
interested in relinking. At this point External Relinker will start

di sassenbling our programin from $1200 to $13FF, | ooking for
references to addresses in the specified range of $8000 to $FFOO. Wen
it finds such an address it will first consult the correspondence

K.J. REVEALED TRILOGY PAGE [167] (C) 1990 K.J.P.B.

tabl e which starts at $1000- If no entry for the address is found, it
will show the disassenbled |ine containing the unknown address and
wait for the entry of the correspondence address. W will |ook up the
PET address in the published table, find its equivalent in the C64
table, type the VIC address over the one on the screen, and press
RETURN. HESMON wi Il add the new correspondence to its table, alter the
address reference in the programand then continue its search. On
subsequent occurrences of this address HESMON wi |l automatically make
the specified replacenent.

F - Fill Menory Bl ock

This command is used to Set a section of nmenory to a particular val ue.
The syntax is as foltows:

F 1111 2222 33

where 1111 and 2222 are the first and |ast addresses (inclusive) of
the section to be filled and 33 the hexadeci mal quantity to be
witten. See, for exanple, the usage in the exanple of Externa
Rel i nker.

G - Go (execute program

This command transfers control of the C64 to a ML. program that is,
it starts execution of the ML. program It nay be used with or

wi t hout an address paraneter. |If no address paraneter is given,
execution is begun at the address shown in the program counter (PC) of
the Regi ster Display command. For exanple you nmay exit HESMON and
"warm start' BASIC by typing:

G Ad14
The C64 will respond, "READY.". For another exanple, see Sectlon 1
H - Hunt for a Sequence

This command | ocates a specific sequence of bytes in nenory. It has
two fornms, as follow

H 1111 2222 33 44 55. ...
H 1111 2222 " ABCDF"

where 1111, 2222 are the first and | ast addresses of the range of
menory to be searched and 33,44, etc., are the hexadecirnal byte(s) to
be found, separated by spaces. The second formallows the bytes to be
specified as characters encl osed by quotes. For esanple to find all
subroutine calls to the character output routine (AB47) in the C64
ROM s we woul d type:

H AOOCO FFFF 20 47 AB

HESMON responds with a list of all such subroutine calls. Note that,
as usual, the low and then high order bytes of the address were
speci fi ed.

To find all occurrences of the string ' READY' (there is only one, at
$A378), we woul d type
H AOCO FFFF " READY"

K.J. REVEALED TRILOGY PAGE [168] (C) 1990 K.J.P.B.

I - Interpret Menory

This command di spl ays the contents of nmenory as 'ASCI|' characters. It
is sinmlar to the Menory Display command except that it shows 32
characters per line. It may be used with either one or two paraneters
and its output may be scrolled just as with the D sassenbl e command.
For exanple, to see the table of BASIC s keywords and error nessages,

type:
| A000 A300
L - Load ' Prograni

This command 'l oads' (i.e., reads) a 'programi into menory from an
ext ernal device such as tape or disk. The | oaded nal erial need not
actually be a program For exanple, it nmay be a section of nenory
containing a data table for External Relinker that was saved to tape
or disk using the Save comuand. However, the nost common use of | oad
istoretrieve ML. programs fromtape or disk. Note that HESMON s

| oad should NOT nornally be used to | oad a BASI C program

The syntax of Load is as follows:

L "programane" 11
where 'programane'’ is the nane of the file to be | oaded (be sure to
i nclude the double quote marks) and '11' is the device nunber from
which to load. If the device nunber is onmitted, the tape drive will be
assumed, if the filenane is also onitted, the first file found on the
tape will be | oaded.
For exanpl e:

L" YAHTZEE" 08
The above | oads YAHTZEE from devi ce eight, the disk drive.

M - Menory Display
Thi s comrand di spl ays the contents of nenory in hexadeci mal notation.
It is sinilar to the Disassenble command in that it nay take either
one or two addresses as paraneters. The two-paraneter from di spl ays
fromthe first address to the second; the one-paraneter form shows
ei ght bytes beginning with the address given. Also |ike the
Di sassenbl e command, the output of Menory Display nay be scrolled up
or down with the cursor-up and cursordown key. For exanple:

M ACOO A040

shows from $A000 t hrough $A047 in hex and in characters, eight bytes
per line. To see nore, press cursor-up or down.

N - New Locat or

K.J. REVEALED TRILOGY PAGE [169] (C) 1990 K.J.P.B.

This command is a relative of the External Relinker conmand. It has a
di fferent general purpose, however. New Locator is designed to convert
absol ute address references in a ML. programfromone nmenory range to
another. It is typicatly used following a Transfer Menory Bl ock
command to relocates programin menory. For exanple, suppose you have
just moved a M L. programfrom $1200-$1280 to $1300-$1380 using T. Any
address references wi thin the program now poi nt $0100 too | ow. New
Locator can fix this. Type:

N 1300 1380 0100 1200 1280

The neaning of the above line is as follows: Disassenble from$1300 to
$1380 checking for addresses in the range $1200 to $1280. Add $0100 to
any such addresses. |If we had noved stable of addresses, for exanples
"junmp table' (pairs of nunbers of addresses, |ow byte followed high
byte), instead of actual nachine code; we would puts 'W follow ng the
| ast paraneter to tell New Locator to treat the menory contents as
pairs of address bytes rather than ML The general Syntax for New
Locator is the follow ng:

N 1111 2222 3333 4444 5555 [W

where 1111 and 2222 specify the actual nmenory range to scan, 3333 is
the 'offset' to add to adjusted addresses, 4444 and 5555 specify the
address range of references which are to be adjusted, and W(if
present) specifies that the scanned range is a table of '"words' with
no opcodes. If not in the "word table' node, New Locator will halt and
di splay any line of machine code it can't disassenble.

0] - Qutput Divert

This command is HESMON s equivalent to BASIC s CVMD conmand. It allows
HESMON s out put to be printed on the C64 printer or stored in a disk
file instead of being displayed on the screen. This is the preferred
met hod to get HESMON s output on a device other than the screen

Qut put Divert has a nunber of options. The conplete syntax of the
command is:

011 22 "fil enane"

where '11' is the device address where the output is to be sent
(normally 04 for the printer), '22' is the 'secondary address' of the
device (typically 02 to OE for the disk drive), and 'filename' is the
filenane to be used for storing the output (See your disk drive
docunmentation). Al of these paranmeters are optional. If you nerely
type '0" HESMON will open a file to device 4, the printer, and start
diverting its output. If you type '0" when the output is already being
diverted, the file will be closed and the output will be directed to
the screen again. That is, typing '0" 'toggles' Qutput Divert on and
off. If you want explicitly to revert to screen output, type 'O3F .
The secondary address and filename default to 'none" since they are
not needed by the printer. For nore information about

filenanes and secondary addresses, consult the docunentation for the
device to which you wish to divert HESMON s out put.

P - Print Screen

K.J. REVEALED TRILOGY PAGE [170] (C) 1990 K.J.P.B.

This command is a limted version of Qutput Divert. It copies the
current screen display to printer or disk. It's just |like having a
snapshot of the current screen inmage. The paraneters of Print Screen
are the sanme as for Qutput Divert, except there Is no toggling because
Print Screen automatically reverts to screen output at the conpletion
of the screen copy. Note: Print Screen wilt NOT copy high resolution
gr aphi cs.

Q- Quick Trace

This command is used after the Breakpoint Set command in debugging ML
prograns. It takes one or zero paraneters just like the Go command. If
specified, the paraneter gives the address at which to hegin
execution. If omtted, execution begins at the PC shown in the

regi ster display. The difference between Quick Trace and Go is that a
breakpoint, defined with the Breakpoint Set conmmand, is only

recogni zed in the Quick Trace node of execution - the breakpoint wll
be ignored if execution is begun with the Go command. Program
execution is much slower with Quick Trace than with Go because Quick
Trace is really just a fast version of the Walk (single step) comand.
Using Quick Trace, instructions are executed one at a tine and HESMON
is re-entered alter each. This process continues until the defined
breakpoint is reached. For an exanple of Quick Trace usage, see the

Br eakpoi nt Set conmmand.

R - Register Display

This command di spl ays HESMON' s current 6502 pseudo register contents
as well as the current interrupt request (IRQ RAMvector. The |RQ
vector is shown as a convenience to the programrer who wi shes to use
this vector to run interrupt driven or 'background' routines. This
vector may be altered like any of tile register contents however,
extreme caution nust be exercised in so doing because the repl acenent
is made | MVEDI ATELY, not at the time of execution of a Go command.
Therefore, the interrupt handling routine nust be inplace BEFORE t he
| RQ vector is altered.

There are no paraneters for the Register Display command, just type
'"R. To alter the register contents, nove the cursor to the line
beginning with ';' and overwite the display. Then hit RETURN and the
contents will be altered. Note that the display, except as noted for
the 1 RQ vector, shows the contents of the 6502 registers at the tine
HESMON was entered. These registers will be set by HESMON to the

val ues shown in the register display just prior to beginning execution
of a programusing the Go, Quick Trace, or Wal k comands. For a fuller
di scussion of the nearring of this display, see Section I.

S - Save ' Program
This command saves the contents of a specified range of nenory to an
external (device as a non-relocating 'program file. The 'non-

relocating' part nmeans that the program nmay be rel oaded fromtape
using BASI C s LOAD command. The syntax of Save is as foll ows:

K.J. REVEALED TRILOGY PAGE [171] (C) 1990 K.J.P.B.

S "filenane" 11 2222 3333

where 'filename' is the filename to be used (don't forget the double
quote marks), '11' is the device nunber on which to save (01, for the
tape and 08 for the disk drive). '2222' is the beginning address.
'3333" is the last address PLUS ONE of the nenory area to be saved.
Al'l the parameters nust be given, except that in tape saves the
"filename' may be null (""). For exanple, to save an M L. program
residing from$1500 to $1DFF to the di sk as ' APROGRAM , type:

S "A PROGRAM' 08 1500 1EO00

Again, notice the last paranmeter is one byte higher than the |ast
program address. Al so, note that HESMON s Save should NOT be used to
save BASI C progranms because HESMON saves prograns as absol ute, not
rel ocatable, files.

T - Transfer Menory Bl ock

This command transfers the contents of a block of nenory to another
area. Its syntax is as follows:

T 1111 2222 3333

where 1111, 2222 are the first and | ast address (not |ast plus one) of
the block to nove and 3333 is the starting address where the block is
to be noved to.

U - (Test Color RAM

U has no paraneters. It tests the color RAM for proper function and
prints 'OK if they are working. If there is a bad byte, it's address
will be printed.

V - Verity RAM Function

This command tests a section of RAMfor proper function. Its syntax
is:

V 1111 2222

where 1111, 2222 are the first and | ast nenory |ocations of the block
to test. HESMON wi Il keep cycling the test over the address range
specified until the STOP key is pressed (it may be necessary to hold
it dowmn for a second or two). At the successful conpletion of each
test of the menory block, HESMON will print a'.' to showit is
working. If a menory location fails the test, HESMON will print its
address followed by a binary nunber showing the data incorrectly
stored. The bits of the nunber are shown nost significant (bit 7) to
| east significant (bit 0) left to right. The bits of the RAM I ocation
that are different fromthe test data are printed in reverse field.
Using the information printed on the screen, it will usually be

possi ble to pinpoint the bad RAMIC(s). Note that if you 'test
addresses that contain no RAM a seemi ngly random pattern of nunbers
will be printed.

K.J. REVEALED TRILOGY PAGE [172] (C) 1990 K.J.P.B.

W- WAl k Program

This command causes singl e-step execution of a ML program under user
control. It, like Go and Quick Trace, nmay he used w thout a paraneter
to begin at the register display 'PC location, or it can accept one
paraneter that specifies the starting address. To exit the Wal k node,
press the STOP key. To step as rapidly as the registers can be
printed, press the SPACE bar. To step at the key repeat rate, press a
normal ly repeating key, e.g., the cursor down key. To take one step
only, press a normally non-repeating key, e.g., the left arrow key.
The 'J' key has a special function in Walk node. it causes HESMON to
continue execution at full speed until a return-from subroutine
instruction is executed. For exanple, type:

W AAD7

HESMON wi | | begi n execution at $AAD7 - the carriage return, |inefeed
output ROMroutine. After executing the instruction at that address

HESMON wi Il halt, showing the register contents and a di ssasanbly of
the next instruction the C64 will execute if Walk is continued. The

display in the above exanple is as foll ows:

25 0D 00 00 FA
, AAD9 20 47 AB JSR $AB47

The first of the two |ines above shows the 6502 register contents in
the sane order as the Register Display command: SR AC XR YR SR Thi s
exanpl e assunes HESMON has just been cold started, otherw se the

regi sters - except the accurmulator - may differ fromthose shown here.
The second line shows that the C64 will next do a subroutine call to
$AB47, the character output routine used by BASIC. To continue, press
any key except STOP or 'J' (no need to hit RETURN). Suppose we press
the left-arrow key once. HESMON wi || now show two nore |ines:

250D 00 00 F8
AB47 20 0C E1 JSR $E10C

Now we see lhe C64 is at |ocation $AB47 about to execute a subroutine
call to $EL10C. Notice the stack pointer (SP) has been decrenented by
two because the return address for the JSR instruction was 'pushed' on
the stack before the junp to $AB47 was executed. Let's press the

| eft-arrow once nore

25 0D 00 00 F6
E10C 20 D2 FF JSR $FFD2

Here we finally get to a place where the C64 is going to a 'Kernal'
routi ne we can recogni ze: the character output routine $FFD2. Since
this routine is docunented in the C64 literature, we know exactly what
it will do: print the character $0D in the accunul ator. Therefore, we
needn't single step further through that routine. So we press the 'J'
key. HESMON shows (after a blank line - where the carriage return was
printed):

20 OD 00 06 F6
E10F BO E8 BCS $EOF9

K.J. REVEALED TRILOGY PAGE [173] (C) 1990 K.J.P.B.

Now the C64 is at the point just follow ng the JSR $FFD2 i nstruction.
The 'carry' bit (bit 0) of the Status register (SR = $20) is clear
(0), so the branch on carry set (BCS) will not be taken. At this point
we may continue to single step through this subroutine by pressing
left-arrow, return to the next higher |level of code (SP = $F8) by
pressing 'J'; or quit the Wal k command by pressing STOP

X -Exit to BASIC

This command gives control to the C64's BASIC interpreter. It has two
forms. The first form'XC has the sane effect as if the C64 were
turned of f and then back on without the HESMON cartridge plugged in
except that HESMON may be entered by pressing RESTORE. The second form
"X causes a 'warmstart' of BASIC,

simlar to pressing RESTORE when HESMON i s not plugged in. Your first
exit to BASIC from HESMON after turning on the C64 should be an ' XC,
ot herwi se BASI C may ni sbehave. Wihile in BASIC, to achieve the sane

ef fect as pressing STOP & RESTORE wi thout HESMON:. First press RESTORE
Then type 'X and hit RETURN

- Convert Decinmal to Hexadeci mal

This command prints the hexadeci mal equival ent of a decimal nunber. If
the decimal nunber is negative it shows the two's conpl ement 16-bit
hex equi val ent and the correspondi ng positive deci mal number. For
exanpl e:

1234

HESMON shows (on the sanme |ine):

#1234 =$04D2 1234

$ - Convert Hexadecinmal to Deci mal

This command prints the deci mal equival ent of a hexadeci mal nunber.
For exanpl e:

$ ABCD

HESMON shows (on the sanme |line):

$ ABCD 43981

+ - Hexadeci mal Addition

This command prints the sum of two hexadeci mal nunbers in hex and
decimal. Al four digits, including | eading zeros if needed, nust be
used. Exanpl e:

+ 1234 5678

HESMON shows (begi nning on the same |ine):

+ 12345678 = $68AC 26796

- - Hexadeci mal Subtraction

K.J. REVEALED TRILOGY PAGE [174] (C) 1990 K.J.P.B.

This command prints the difference of two hexadeci mal nunbers in hex
and deci mal :

- 1234 5678
HESMON shows (begi nning on the saneline):
- 1234 5678 = $BBBC 48060

Notice that the decinmal nunber in this exanple is positive even though
we woul d expect the result of this subtraction to be negative. This is
because the two-byte nunber $EBEC doesn't retain the information that
the result is negative. It you want to know the true negative deci nal
result, either type in the operands in the reverse order, or type:

- 0000 BBBC = $4444 17476

So, the true decinmal value of the difference $1234- $5678 is - 17476.

Things to be careful about when using HESMON

The BASIC interpreter has control of the C64 at all tines when BASIC
is running. This neans that the worst that's likely to happen if your
BASI C program has an error is that BASIC will issue a ' SYNTAX ERROR
message and stop your program A ML. nonitor, on the other hand, nust
allowits user to take conplete control of the C64 to execute certain
commands. So, if your ML. programhas an error and you attenpt to
execute it using the Go conmand, the likely result is that the C64
will go catatonic - that is, even |he RESTORE key may not bring back
HESMON. In this event you will have to turn the power off and back on
to get back to HESMON. You nmay avoid this catastrophe by using the

Wal k command to check out your program Neverthel ess, you can still
send the C64 to never-never land by attenpting to Walk through an in-
struction that disassenbles as '???' . These instructions are

"uni npl enent ed op-codes'. They do not have defined result. Mny of

t hem cause the 6502 to 'crash' - that is, enters a state fromwhich it
may be recovered only by powering on again.

HESMON uses 33 bytes near the bottom of the machine stack ($120-$141)
for its variable storage. Most M L. prograns do not uses sufficiently
| arge anobunt of the stack to interfere with this storage - but it is a
possibility to be aware of. Large, conplex BASIC prorgans sonetines do
use enough of the stack to interfere with these |ocations. And
finally, RS 232 files will not work correctly when HESMON i s pl ugged
in.

Acknowl edgenent s

The seeds of HESMON are contained in the public domain nonitor
prograns for the PET/CBM conmputers known as M CROMON and EXTRAMON.
These prograns, while not directly useful in the C64 environnent,
provide at |east the general framework and the phil osophy of

user-friendliness which distinguish themand HESMON from other M L.
nonitors of the author's experlence.

VIC, PET, C64 and CBM are trademar ks of Commopdore.

K.J. REVEALED TRILOGY PAGE [175] (C) 1990 K.J.P.B.

Copyright Notice

Copyright (c) 1982 by Human Engi neered Software. All rights reserved.
No part of this publication my be reproduced in whole or in part

w thout the prior written permi ssion of HES. Unauthorized copying or
transmittling of this copyrighted software on any nedia is strictly
pr ohi bi t ed.

Al t hough we neke every attenpt to verify the accuracy of this
docunent, we cannot assume any liability for errors or omissions. No
warranty or other guarantee can be given as to the accuracy or
suitability of this software for a particular purpose, nor can we be
liable for any | oss or damage arising fromthe use of the sane.

HESMON 64 is a registered TM of HES.
Appendi x A

The HESMON Commands
in Brief

The following is a condensed |ist of
HESMON' s commands for quick

reference. Brackets ([]) denote optional
par anet ers.

1111 MVM 000000 - Sinple Assenbl er

1111 2222 - Breakpoint Set

1111 2222 3333- Conpare Menory Bl ock

1111 [2222] - Disassenble

1111 2222 3333 4444 5555 [W - External Relinker
1111 2222 33 - Fill Menory Bl ock

[1111] - Go

1111 2222 33 44 55....o0r

1111 2222 "XXXXX...." - Hunt for sequence
| 1111 [2222] - Interpret Menory

L "nane" 11 - Load Program

M 1111 [2222] - Menory Display

N 1111 2222 3333 4444 5555 [W - New Locat or
O [11[22]["nanme"]]] - CQutput D vert

P [11[22["nane"]]] - Print Screen

Q[1111] - Quicktrace

R - Register Display

S "name" 11 2222 3333 - Save Program

T 1111 2222 3333 - Transfer Menory Bl ock

U- Test Col or RAM

V 1111 2222 - Verify RAM

X[C] - Exit to BASIC

11111 -Decinal to Hex

$ 1111 - Hex to Deci nal

+ 1111 2222 - Hex Addition

- 1111 2222 - Hex Subtraction

: 1111 22 33 44 55 66 77 88 - Menory Modify
; 1111 2222 33 44 55 66 77 - Register Mdify
1111 11 [22[33]] XXXX - Di sassenbly Mdify

IOTMMOO®>

K.J. REVEALED TRILOGY PAGE [176] (C) 1990 K.J.P.B.

